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PREFACE
The present book, which is intended as a text for use in

the freshman year of college or technical school, has been pre-

pared with the following considerations particularly in mind.

(1) In view of the fact that a considerable number of

pupils enter college today for whom no knowledge of quad-

ratic equations can be assumed, it seems desirable to include

a complete treatment of this important topic in the present-

day college text. Two chapters (II and III) are therefore

devoted to quadratic equations, the first of which, however,

is altogether elementary and may be omitted at the discretion

of the teacher.

(2) In order to meet the needs and customs of different

institutions, the various chapters have been made quite inde-

pendent of each other, thus permitting a ready adjustment of

the book to either a long course or a short one, and affording

the teacher the greatest possible flexibility in the choice of

topics for any course of given length. In this connection the

author feels that it should be frankly recognized that today

college algebra in most institutions is pursued but a few

weeks. This makes it impossible to cover a wide range of

topics and forces such a selection as may fit best the needs of

the particular situation. Much may be gained, however, from

a brief but intensive study of a few special topics in algebra

at this period of the pupil's career.

(3) In view of the importance in elementary physics and

other applied fields of the subject of variation, this topic has

been treated somewhat more fuUy than usual. On the other

hand, such topics as complex numbers (vector addition,

multiplication, etc.), partial fractions, limits and infinite series
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have been omitted in the behef that, even in case there is time

to include them in the course, they may be taken up to greater

advantage at a later time when the pupU is face to face with

their chief applications.

(4) The ideal problem for a freshman text is a short one

which illustrates pointedly the mathematical principle at

issue. Problems long in statement and dealing with the tech-

nique of the arts and sciences should have but httle place in

the freshman year. At this period the essential task of both

teacher and text should be to train the pupil in accuracy and

conciseness of thought and expression, the mathematics itself

forming, for the most part, the medium through which this

may be accomplished.

Mention may be made of the fact that certain sections of

the book have been starred (*) to indicate that they are of

minor importance and may be omitted without destroying

the continuity of the whole. Also, in view of the natural over-

lapping of certain parts of the college course with the more
advanced parts of the usual second, or advanced course of the

high school, the author has ^not hesitated in the treatment of

some of the earlier topics, such as the progressions, variation,

binomial theorem and logarithms, to follow closely the treat-

ment of these same topics to be found in the later pages of the

"Second Course in Algebra" by Ford and Ammerman (Mac-
millan), the exercises, however, being changed.

The author would here express his thanks to Professor

E. B. Lytic, of the University of Illinois, who read the manu-
script and offered valuable suggestions, and to Professor

J. L. Markley and Mr. R. W. Barnard, of the University of

Michigan, who assisted in reading the proofs.

Walter Btjeton Fobd.
University of Michigan.
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COLLEGE ALGEBRA

CHAPTER I

REVIEW TOPICS

1. Algebraic Reductions. The process of reducing, or

simplifying, a given algebraic expression makes frequent use

of the following principles from elementary algebra, f

Pbinciple 1. A parenthesis preceded by a minus sign may
be removed from an expression if the signs of all the terms

in the parenthesis are changed.

Thus a— (6— c) =a — 6+c.

Likewise a+b—(c — d+e)=a-\-b—c-l-d—e.

A parenthesis preceded by a plus sign may be removed
without changes in the signs of the terms which it includes.

Thus a+(b—c)=a+b—c.
Likewise a+b+(c—d+e)=a+b+c—d+e.

EXERCISES

Simplify each of the following expressions by removing all paren-

theses and combining terms wherever possible.

1. x— (,y — z). 4. m—{n—2a).

2. x— (—y—z). 5. 5a — 26 — (a— 26). Ans. 4a.

3. -(a+6)+2. 6. a-(6-c+o)-(c-6).

fNo attempt will be made in the present chapter to give a complete

summary of the topics treated in high school algebra. Only a few will

be considered, particularly those which are important for the study

of the later chapters of this book. The student wiU do well to have at

hand at all times for reference purposes a textbook in elementary

algebra, preferably the one which he has used in the high school.

1



2 COLLEGE ALGEBRA [I, § 1

7. 2xy+Sifi-(x^+xy-y'^).

8. m+{3m—n) — (2n—m)+n.

9. a2b+62c+o2c2-(2a2b2_3a2c)+ (4a26-5a2c2-6a262).

10.
^+(y~^)~('^~^)

a+b-(2a+b-c)

11. (o+b)2-(o-6)2.

j2 2ab-(a+b)2

a;2-(x-2/)2

13. o(b-c)+6(o-c)-c(o-b).

Principle 2. Multiplying or dividing both the numerator

and the denominator of a fraction by the same number does not

change the value of the fraction.

Thus

Likewise

Also

This principle is frequently used to change, or reduce a

fraction to a form having a given denominator.

Thus, suppose it is desired to change the fraction

a/{a+b)

to a form having cfi—lfi as its denominator. To do so, we multiply

both numerator and denominator by a—h, as follows:

a ^ aja-b) ^ cfi—ab ^^_
a+b (o+b)(o-b) o2-b2

The principle is also used to reduce a fraction to its

lowest terms.

Thus, suppose we are to reduce the fraction

2la2x^y

30a3xz

to its lowest terms. The process consists in dividing both numerator
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and denominator by all the factors which they have in common; that

is, in the present case, by 3, by a2, and by x. In practice, the work is

done by cancellation as shown below:

7 X

^S^/z lOaz

lOo

EXERCISES

1. Change 2/3 to a fraction whose denominator is 21.

2. Change 4/5 to a fraction whose denominator is 125.

3. Change 5a/7 to a fraction whose denominator is 42.

4a2
4. Change — to a fraction whose denominator is 20?/*.

52/

x-Z
6. Change to a fraction whose denominator is {x— \)K

x— 1

6. Reduce to a fraction whose denominator is 9— a2.

d—

c

7. Reduce to a fraction whose denominator is a— 6.

o—a

Reduce each of the following fractions to its lowest terms.

R. "^^-i^
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2. Addition and Subtraction of Fractions. In case two

fractions have the same denominator, their sum will be equal

to the sum of their numerators divided by this denominator.

Thus 2 5_2+5_7
3 3 3 3

Likewise a . c

_

a+c .

b b b '

mn p—q _'mn+p—q
x'hj x^y x^y

In case two fractions do not have the same denominator,

they may be added by first changing them, as in §1, so that

they shall come to have equal denominators, and then pro-

ceeding as mentioned above.

Thus 2 3^£^ ^8+9^17^^5 •

3 4 12 12 12 12

Likewise o cad 6c_ad+6c.

b d bd bd bd

m+n m-n _ (m+n)^ (m—n)^ _ m?+2m,n+n^+nfi—2mn+n^ _ 2m^+2n^
m-n m+n m^—rfi T/fi-r^ nfi—n^ irfi—rfi

In practice, when adding several fractions, it is best to

determine first the least common multiple {L. C. M.) of the

several denominators, that is, the expression of lowest degree

which exactly contains each of them, then change each frac-

tion so that its denominator shall be this L. C. M. and add
as indicated above.

Thus, in adding 2/15 and 3/10, the L. C. M. of the denominators
is 30. The two fractions, when changed so as to have 30 as denomi-
nator, are respectively 4/30 and 9/30. Hence the desired sum is

(4+9)/30 = 13/30.

Likewise, in adding a/{mM) and b/{mrfi), the L. C. M. of the
denominators is rrfirfi, so that

_a 6 _ an . bm an+bm .

m^n mrfi m'hi^ m'W nfin^
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Similar statements apply whenever one fraction is to be

subtracted from another, or when both addition and sub-

traction are involved any number of times.

Thus

Sa',b „ ,
1 6ob

,
5b2 30b

,
10 6o6+5b2-306+10 a„„

5 2 b 10b 10b 10b 10b 10b

Likewise

{a-b)^ {a+b)^ 6oba—b a+b 6ab

a+b a-b a'^-b^ o2-b2 a^-b^ ' af-b^

(a-b)g-(a+b)g+6ab ^ a2-2a6+ba-o2-2ab-bii+6ab ^ 2ab ^^g_

EXERCISES

Simplify each of the following expressions by performing the indi-

cated additions and subtractions.

g X X—

2

x-2 x+2

10. a:-4 g-6 ^ x+8
3 8 6

'

ax—bx+ab

1.
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3. Multiplication and Division of Fractions.

Principle 1. In order to multiply two or more fractions

together, multiply their numerators together to get the numerator

of the product, and multiply their denominators together to get

the denominator of the product.

In performing such multiplications, it is desirable to

cancel like factors from numerator and denominator wher-

ever possible.

2Thus

Likewise

Similarly

1 2 6_ 1XXX _̂2
2 3 7 ^X/X7 7

4x2/ 3a^ lixj/-i^ lax

a—b d jfl'-^d
rX~

a+b (^-b^ (a+6)j:a'-67(a+6) {a^bf

Pbinciple 2. In order to divide one fraction by another,

invert the divisor and proceed as in multiplication.

Thus
1^21 33
2^3~2^2~4'

Likewise x
5mn 10m?n pipn/ pa^ ax

2 2m
Similarly a—

6

(a-bf
_
c?-ab jfl-^ b b{a-b)

a+b b a+b a^fl^=-Vy a(a+b)

EXERCISES

Perform each of the following indicated multiplications.

J
5x^ 3as g 2ox 106^

'

2ac 101/2- i2by^'^'

n imn I5bx . a^b" Gr'
-X * V-

Zxy mnf 4x a^-^b^"
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- a 6 o 4a— 6 2a 4x^—2/^
5. N/ . o. y X '

a+b a—b 2x+y 4a^—ab 4

6.
^y'

,^25-lOa: ^ x^+5x+6 3^+7a:+10

{a-b)\, b (a+bf ^„ /^ 2 \ /m2+m-2N
a^-ab a^-b^ \ to-1/\ mHm /

7.

a+6 '"c?—ob'"c?— b

Perform each of the following indicated divisions

x+2y
11.
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4. Simple Equations. By a simple equation is meant one

which, when cleared of fractions, contains the unknown
number to no higher power than the first. The usual

method of solving such equations is illustrated below.

Example. Solve the equation

x+1 2x-b lla+5 1-13

2 5 " 10 3 '

Solution. The L. C. M. of the denominators is 30. Hence, multi-

plying both sides of the equation by 30 in order to clear of the fractions,

we obtain

16(x+l)-6(2s-5)=3(llx+5)-10(x-13),
or

15x+15-12a;+30 = 33x+15-10a;+130.

Transposing and collecting like terms now gives

-20x = 100.

Therefore

x= —5. Ana.

Check. Placing x = — 5 in the original equation gives

-5+ 1 -10-5 -55+5 -5-13

2 5 ~ 10 3 '

or

-4 15 -50 18

2 5
~

10 3

'

or

-2+3= -5+6,
or

1 = 1.

EXERCISES

Solve each of the following equations for x, checking your answer
for each of the first five.

1 2x-3 x+1 5x+2

4 ~6~~ 12

2 ^-5 2x+3 ^ 7x+3

3 6 12

3.
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5 6x+3 3a:-l 2x-9 g 2x+l _ 8 2a:-l

15 5x-25~~5 " 2x-l 4x^-1 ~2i+l'

In each of the following problems, let x represent the unknown quan-

tity, then form an equation and solve it:

7. Divide 38 into two parts whose quotient is 7/12.

8. Divide 96 into two parts such that 3/4 of the greater shall exceed

3/4 of the smaller by 6.

9. I have $110 in one bank and 875 in another one. If I have $45

more to deposit, how shall I divide it between the two banks in order

that they may have equal amounts?

10. A motor boat traveUng at the rate of 12 miles per hour crossed

a lake in 10 minutes less time than when traveling at the rate of 10

miles per hour. What was the width of the lake?

[Hint. Time = Distance -=- Rate.]

11. A freight train goes 6 miles an hour less than a passenger train.

If it goes 80 miles in the same time that a passenger train goes 112 miles,

find the rate of each.

12. Atank can be filled by one pipe in 10 hours, or by another pipe in 15

hovu-s. How long will it take to fiU it if both pipes are used at thesame time?

[Hint. Let x = the number of hours. Then l/x = the part both can

fill in one hour.]

13. Two pipes are connected with a tank. The larger one is an

intake pipe which can fill the tank in 3 hours, while the smaller one is

an outlet pipe entering at the bottom which can empty the tank in 4

hours. With both pipes open, how long before the tank will fill?

14. A can do a piece of work in 16 hours, while B can do it in 20

hours. If A works 10 hours, how many hours must B work to fimsh?

15. An aviator made a trip of 95 miles. After flying 40 miles, he

increased his speed by 15 miles an hour and made the remaining distance

in the same time it took him to fly the first 40 miles. What was his rate

over the first 40 miles?

16. A 5-gaUon mixture of alcohol and water contains 80% alcohol.

How much water must be added to make it contain only 50% alcohol?

17. What weight of water must be added to 65 pounds of a 10%
salt solution to reduce it to an 8% solution?

18. A train 660 feet long, running at 15 miles an hour, will pass

completely through a certain tunnel in 49J^ minutes. How long is

the tunnel?
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5. Elimination. In case two simple equations (see §4)

are given, each containing the two unknown values x and y,

these values may usually be obtained by the process of

elimination as is illustrated below.

Example 1. Solve the equations

(1) 2x+3y = 2,

(2) 6a; -42/ = 28.

SoLtJTiON. From (1) we have

(3) 2x = 2-3j/.

Therefore -2—3u
x =

2

SubstitutiBg this value for x in (2), we find

(4) 5(^)-42/ = 28.

In (4) we have an equation containing only y; that is, x has been

eliminated from (1) and (2). Clearing (4) of fractions and simplifying,

we obtain —23y = i6. Therefore y= —2.

Substituting —2 for y in (1), we find

2a;-6 = 2, or 2x = 8, or a; = 4.

Hence the required values of x and y are a; = 4 and y= —2.

Check. Substituting a; = 4 and y= —2 in (1), we have

2X4+3(-2)=8-6=2,
as desired. Likewise, with x = 4t and y=—2, equation (2) is satisfied,

since it becomes

5X4-4X(-2) =20+8 = 28.

The preceding method of solution, wherein the value of

one of the letters, as x, is obtained from one of the equations

and then substituted in the other equation, thus giving an

equation, like (4), containing only one letter, is called

elimination by substitution. Another common and very

useful method of elimination is illustrated below.

Example 2. Solve the equations

(1) 3x+iy= 12.

(2) 2a;-5j/ = 54.



I, § 5] REVIEW TOPICS 11

Solution. Multiplying (1) by 2 and (2) by 3, the two equations

become

(3) 6a;+82/ = 24,

(4) 61-152/ = 162.

The coefficient of x is now the same in both (3) and (4) so that, upon
subtracting (4) from (3), we obtain

(5) 23!/= -138.

Therefore 2/= —6.

Substituting y= —6 in (1), we now have

3x-24 = 12, or 3x = 36.

Therefore a; = 12. Hence the required values of x and y are x = 12,y=—&.

EXERCISES

Find, by any method of eUmination, the values of x and y in each

of the following pairs of equations. Check your answers in the first five.

^ { x-y= i,

\4y—x = 14

3x , 2y

3x-42/ = 26, /o+X=17.2 4

x+y x—y

j y+l=3x, 0)2 3

\ x-8y = 22.

3.
\5x+9 = 3y. \ x+y ^-y

_^^

, j iy= 10-x, ^^ *

l-x=3y, ^°' )5y-8
,
5x-3

5 4

+^= 18-5x.\3il-x)=40-y.
(^ 2

a:+|=ll.
jj )x-l x+y '

l?^Q,.^oi )-^+3 = 0.
+3^ = 21. Ix-y

r4 3_14

P = ll-^> 12 r ^ 5
)3 2 ]B , 5^?5

[37 [Hint. Solve first for 1/x and 1/2/.]
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S5

6
-+- = 64,

X y

In each of the following examples, let x and y represent the desired

unknown quantities, form two equations and solve.

15. The sum of two numbers is 76 and their difference is 5. What
are the numbers?

16. One-third the sum of two numbers is 10, while one-sixth of their

difference is 1. Find the numbers.

17. A father's age is 1}4 that of his son. Twenty years ago his age

was twice his son's. How old is each?

18. A part of $2500 is invested at 6% interest and the remainder at

5%. The yearly income from both is $141. Find the amount of each

investment.

19. A and B together can do a piece of work in 12 days. After A
has worked alone for 5 days, B finishes the work in 26 days. In what

time could each do the work alone?

[Hint. If x = the time in which A can do it alone, and j/ = the time

in which B can do it alone, then the part which A can do in one day
= 1/1, etc. See Ex. 12, p. 9 and Ex. 12, p. 11.]

20. An errand boy went to the bank to deposit 38 bills, some of them
being $1 biUs and the rest $2 bills. If their total value was $50, how
many of each were there?

21. A grocer wishes to make 50 pounds of coffee worth 32 cents a
pound by mixing two other grades, which are worth 26 and 35 cents

per pound, respectively. How much of each muiit he use?

22. One cask contains 18 gallons of vinegar and 12 gallons of water;

another contains 4 gallons of vinegar and 12 of water. How many
gallons of each must be taken so that when mixed there may be 21

gallons containing half vinegar and half water?

23. Two cities are 140 miles apart. To travel the distance between
them by automobile takes 3 hours less time than by bicycle, but if the

bicycle has a start of 42 miles, each takes the same time. What is the

rate of the automobile, and what the rate of the bicycle?

24. The perimeter of a certain rectangle is 16 feet. If the length

be increased by 3 feet and the breadth by 2 feet, the area is increased

by 25 square feet. What are the original length and breadth?
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6. Graph of an Equation. In reviewing this topic, it

is desirable first to recall the following fundamental ideas

and definitions.

Let two lines XX' and YY' be drawn on a sheet of squared

(coordinate) paper, the line XX' being horizontal and YY'
vertical. Two such lines constitute a pair of coordinate axes.

XX' is called the x-axis, YY' is called the y-axis. The point

where they intersect is called the origin.

Having chosen any point, as P, in the plane of the axes,

draw the perpendiculars PA and PB. Then PA, which is

parallel to the x-axis, is called the abscissa of P, while PB,

which is parallel to the y-axis, is

called the ordinate of P. The ab-

scissa and ordinate taken together

are called the coordinates of the

point P.

Thus, in Fig. 1, the abscissa of P
is 3 units, while its ordinate is 4 units.

Note that the x- and y- unit scales are

indicated along the x- and y-axes,

respectively.

All abscissas measured to the

right of the y-axis are taken as positive, while all abscissas

measured to the left of the same axis are taken negative.

Thus the abscissa of Q in Fig. 1 is —2; that of B is —3; that of S

is +3.

Similarly, all ordinates above the x-axis are taken

positive, while all ordinates below the same axis are taken

negative.

Thus the ordinate of Q is +Z; that of R is —4; that of 5 is —2.

In reading the coordinates of a point, the abscissa is always

read first and the ordinate second.

Thus, in Fig. 1, P is the point (3, 4); Q is (-2, 3); R is (-3, -4);

S is (3, -2).
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Let us now consider the following simple equation con-

taining the two unknown numbers, x and y:

(1) x+y=5.

Since any pair of values (x, y) whose sum is 5 will satisfy this

equation, it follows that there are an unlimited number of

such {x, y) pairs, or solutions. For example, the following

four pairs are particular solutions:

(2) (x = 6,2/=-l);(x = 2,j/= 3);(a;= i,2/
= f);(x = 8,2/=-3).

If we now regard each of these solutions as the coordinates

of a point, and locate (plot) the four points thus obtained, it

will be found that they all he upon

one and the same straight line, as

shown in Fig. 2. This line is called

the graph of the equation (1).

Similarly, the graph of any

simple (first degree) equation con-

taining two letters may be drawn.

However, it may be observed that

in order to draw the graph it suf-

fices to plot merely two solutions,

since two points completely de-

termine a line. Such a line will necessarily pass through, or

contain, all the other solutions.

If, instead of one equation being given, there are two of

them, as for example

\
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the present case this is seen to be the point a; = 2, j/= 4. This

common solution is the same as would be obtained if one

followed the method of eUmination

described in § 5. Hence, Fig. 3 may-

be regarded as giving the graphical

meaning of such a solution.

Note. In exceptional cases, the

graphs of two simple equations may
turn out to be parallel lines so that

they nowhere intersect. In such a case,

the two equations have no coramon
solution. Fig. 3
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7. Literal Equations and Formulas. Equations in wiiich

some, or all, of the known quantities are represented by

letters are called literal equations. The known quantities

are generally represented by the first letters of the alphabet,

as a, b, c, etc. Literal equations are solved by the same

processes as numerical equations.

Example. Solve the following literal equation for x:

ax = hx-\-7c.

Solution. Transposing, we find

ax— hx=^c.

Combining like terms, we have

(a— 6)x = 7c.

Dividing by (a— 6), we obtain

x =—— Ans.
a—b

It is to be noted that a literal equation is said to be solved

for the unknown number, as x, only when this number has

been expressed in terms of the other (known) letters, as illus-

trated in the preceding example.

An important special class of literal equations are the so-

called formulas that occur in geometry, physics, engineering,

etc. For example, if a represents the length of the base of

any triangle and h represents the altitude, then the area, A,

of the triangle is given (determined) by the formula

(1) A^lah.

Here the area is expressed in terms of the base and the

altitude.
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Similarly, the circumference, C, of any circle expressed in

terms of the radius r is given by the following formula, in

which IT represents the incommensurable number, 3.1416

(approximately)

,

(2) C=2Trr.

Again, the area, A, of a circle in terms of the radius r is

given by the formula ^

(3) A=irr\

As an example of an important formula in

physics, it is readily seen that if an object

moves during t seconds with the constant

velocity of v feet per second, then the dis-

tance, s, passed over is given by the formula

(4) s = vt.

Again, the following is an important formula in engineering

:

The horse-power, represented by HP, which a steam engine

is delivering when the area of the

piston is A square inches, the pres-

sure of the steam per square inch

is P pounds, the length of the piston

stroke is L feet and the number of ^^°- ^

strokes per minute is N, is given by the formula

„P PLAN
^^^

33,000

The following important formulas from plane and solid

geometry afe to be especially noted:

(6) h^ = a''+b\

which is the theorem of Pythagoras concerning the square

of the hypotenuse of a right triangle.

(7) F=3TrrS,

which gives the volume of a sphere in terms of its radius.



18 COLLEGE ALGEBRA [I, §7

(8) A = iTrr^

which gives the area of a sphere in terms of its radius

(9) V^Tn'h,

which gives the volume of a right circular cyhnder

in terms of the radius of the base, r, and the alti-

tude, h.

(10) A = 2Tnh, pwr
which gives the area of the lateral surface of a right circular

cylinder in terms of the radius of the base, r, and the

altitude, fi.

(11) V=^Trr'h,

which gives the volume of a cone of circular

base, r, and of altitude, h.

(12) A=Trrl.

which gives the area of the lateral surface of a

cone of circular base, r, and of slant-height, I.

(13)
'=t1<^

:=+b^)-|--

FiG. 9

which gives the volume of a spherical seg-

ment, or slice of a sphere between two par-

allel cutting planes, in terms of its altitude, h, and the radii,

o, h, of its bases.

(14) 7=2^71,

which gives the area of a zone, or portion of the surface of

a sphere lying between two parallel planes, in terms of the

altitude, h, of the zone and the radius, r, of the sphere.

The following formulas from physics and mensuration
may also be noted.

If an elastic ball (like a bilUard ball) weighing PFi ounces
and moving with a velocity of Fi feet per second strikes

(impinges upon) a second ball of like size but weighing W^



I, § 7] REVIEW TOPICS 19

ounces, the latter standing at rest, then, after the impact,

the first ball and the second ball will move with velocities vi

and va which are given respectively by the formulas

, ,
W1-W2., -, 2Wi ,, ,^

Q5) ^1= 7i ft. per sec, i;2= ki ft. per sec.
^ ' W1+W2 Wi+Wi

It is understood in the experiment just described that the first ball

moves directly toward the center of the second one before the impact.

Both continue in this same line after the impact.

EXERCISES

Solve each of the following literal equations for x, checking your

answer in the first five.

1. ax— \=h.

2. ax-{-hx = c.

3. 3a;+b=x-3b.

4. 2+b=5+„.
a

"• |-a=a;— 1.
c 10

. x—b
,
x—c „ x+a

x-S x+2

7.

9.

X
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19. If the area of a circle is 44 square inches, what is the value

(approximately) of the radius?

[Hint. Use formula (3), taking ir = 3^].

20. How long will it take a person to walk 1 mile if his rate of walking

is 8 feet per second?

21. An automobile traveled T hours at the rate of v miles per hour.

By how much would this rate have had to be increased in order that

the distance be covered in t minutes less time?
P

22. The formula for the area A of a trapezoid

whose bases are B and 6 and whose altitude is /i is / |!|

A = \h{B+h).

Using this formula, answer the following

question : How long should the upper base of a

trapezoid be in order that, if the lower base is 20 feet long and the

altitude is 15 feet, the area may be 180 square feet?

23. The inside diameter of the piston of a steam engine is 8 inches,

while the length of stroke is 1}^ feet. When the steam gauge registers

a pressure of 60 pounds per square inch, how many strokes per minute

must the piston make if the engine is to deliver 22 horse-power? Work
by formula (5).

24. The velocity, v, of sound, measured in feet per second, is given

by the formula

i; = 1090-|-1.14(<-32),

where t is the temperature of the air in Fahrenheit degrees.

Find (a) the velocity when the temperature is 75°; (b) the tem-

perature when sound travels 1120 feet per second.

26. Derive formulas for the following:

(o). The number N of turns made by a wagon wheel d feet in diam-

eter in traveling s miles.

(6). The number N of dimes in m dollars, n quarters and q cents.

(c). The value of a number containing three digits if the digit in

unit's place is a, the digit in ten's place is 6 and that in hundred's

place is c.
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26. The centrifugal force F, measured in pounds, with which a body
weighing W pounds puEs outward when moving in a circle of radius

r feet with a velocity of v feet per second is determined by the formula

F=
32r"

Use this formula to answer the following questions. A pail of water

weighing 5 pounds is swung round at arm's length at a speed of 10 feet

per second. If the length of the arm is 2 feet, find (o) the pull at the

shoulder when the pail is at the uppermost point of its course; (b) when
at the lowest point of its course. Also find the least velocity possible

without water dropping out at the uppermost point of the course.

, 27. The weight W that can be raised by
the device shown in Fig. 11 is given by the

formula

27riflP
W=-

dr

where P represents the pressure appUed at

the handle and where R, r, d and I have the

lengths indicated in the figure. Show, by pjg n
means of this formula, that if d be halved and

the number of teeth on the wheel be correspondingly doubled to fit the

new gear, other parts remaining the same, then twice as much weight

W can be rs,ised as before with a given pressure P on the handle.

8. Exponents. The laws of exponents are briefly ex-

pressed in the following five formulas.

I.

Thus

n.

Thus

m.

Thus

(3*)==3«'.

(ab)"'=a'"b'".

(2-3)2 = 2='-3^
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Thus

V. -—=0'"-".
a"

Thus - = 2^-2 = 2''.

2''

These formulas apply not only when m and n are positive

integers, but in all cases.

Thus 2J • 2~i = 2t~i = 25['^,

(3f)^=3txf = 3t,

The use of formulas I—V in this universal way implies

(as shown in elementary algebra) that the expression a""

must have the same meaning as the qth root of a"- That is,

we have

VI. a9 = Vaf'

Thus 5* =-^ = V^25!

Similarly, any quantity, as a, when raised to a negative

exponent, as — n, must have the same meaning as the recip-

rocal of a". That is,

vn. a-"=—

.

a"

2 1
Thus 6-5 = -5--

6'

Again, for any value whatever of a, except 0, the expression

a" has the value 1. That is, when a is not

vin. <f=l.
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EXERCISES
Find the results of the indicated operations in each of the following

cases, using one or more of the formulas I-V.

1. 2« . 2^.

2. (-l)3(-l)2.

3- (i)"(l)'
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44. Solve for x in each of the following eauations.

(a) xi = 2. (c)s?=-i. (e) a;»+32=-0.

(b) x* = 27. (d) x^=-3. (/) ix^ = 25.

45. Multiply x+3x^-2xi by 3-2x~*+4x~*.

Solution.

x+3xt-2xi

3-2x~a+4x"*

3x+9xt-6x^

-2x^-6x^+4

+4x^+12 -8x~^

3x+7x'^'-8x*+16-8x~3. Product.

Multiply

46. a-2a^H-3 by 2a*+3.

47. 2x*-3x^-4+x~^by 3x'^H-x-2A

48. a*x~i+2+a~^xJ by 2a~^xJ-4a~^x^+2a~^x4.

Divide

49. 5x+2x*-2x^+lby x*+l.

BO. x""i-x~^+5-2x^ by l+2v/x.

51. --xV*-4v^

—

% hy^+2yi.
y Vx

9. Simplification of Radicals. We know that the square

root of the product of two numbers is the same as the product

of their square roots. For example, •\/4X25 is the same as

-s/iXv^, because both are equal to 10, for the first is^100,
or 10, and the second is 2X5, or 10. In the same way,

•V^8X3 = \/8X-v^, or simply 2\/^. In fact, we have the

following general formula

Again, y/i/Q is the same as -\/4/\/9, because both are

equal to 2/3. (Explain.) Similarly, -x/^/S may be written
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\/5/\/8, which reduces to the more simple form i\^5. So
in general we have

"la _\^
Vb

Note that formula IX may be regarded as a special conse-

quence of formula III, while formula X is a special conse-

quence of formula IV.

The two preceding formulas enable us to simplify many
radical expressions, as illustrated below.

Example 1. Simplify -v/si.

Solution. Using formula IX, we have

\/54= V9X6= \/9X -\/6 =3V6. Aiw.

Example 2. Simplify v^.
Solution. ^^32= v^8X4= -v^X v^=2 v^. Ans.

Example 3. Simplify \j—--

Solution. /I^ Vg_^V4X V2 ^2V2, ^^_
^27 V27 V9X-V/3 3V3

Example 4. Simplify V28a^6.

Solution. V28a% = V4o^X 7b = Via*X Vn = 2a? Vn. Ans.

Example 5. Simplify 2 p2xhfi

\ ^

Solution. Af^^

_

</^^y.^^ ^78^X^9x2 2;/^^^ ^^_
\ 2« .^ 22 Z2

EXERCISES

Simplify each of the following radicals.

1. v/rs. 2. \/24. 3. -v/72-

4. Vi25. 5. \/99. 6. v^.
7. aTsI. 8. i^8l. 9. •v/32.

13. VSItoW. 14. -1/4(0+6)3. 16. -^27i%332.

f3(a+b)2(

4(a2-b2)
16 .P^ 17 =/i6^

18 /
3(a+b)2c2rf

\ s3« \ s3J \ 4(a2-t
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19. Reduce

to an equivalent fraction having no radical in its denominator.

Solution. Multiply both numerator and denominator by -\/6,

thus obtaining

V6-V12 „, V6-2V3 ^^
6 6

Reduce each of the following expressions to equivalent fractions

having no radicals in their denominators.

20 2H-\/5 21.
3\/2-\/3

22. ^"V'g
' 2V7 ' 2-v/6 '

'

3+^2
[Hint to Ex. 22. Multiply both numerator and denominator by

3-^2.]

23 3Va-4-v/b 24. V^+1+3
' VxTl+2'

26.
Va+ \/b— \/a+6

3^20-1+2-1/0 Va- Vl+Va+ft

10. Imaginary Numbers. Complex Numbers. An indi-

cated square root of a negative quantity, as for example

•\/— 4 or •\/— 1/2, is called an imaginary number, or a ^ure

imaginary number. Such a combination as 5+V'— 4,

wherein a pure imaginary is added to an ordinary (real)

number, is called a complex number. Every complex num-
ber can be reduced to the typical form a-\-b-\/— l, where

a and b are properly determined real (positive or negative)

numbers. Thus 5+\/— 4 becomes 5-i-2-\/— 1; likewise

7— \/— 3 becomes 7—v/sV— 1 ; etc. In all problems involv-

ing complex numbers, first put each in its proper form

a+b \/— l, then proceed according to the customary rules

of algebra, remembering to substitute for (-v/— 1)^,

wherever it occurs, the value —1.

In the exercises which follow, the symbol i is used for

brevity to stand for\/— 1.
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EXERCISES

Perform the indicated operations and simplify where possible.

1. (H-i)(2-i).

Solution. 0.+i)i2-i)=2+i-i^ =2+i-i-l)=Z+i. Ans.

2. (H-V^)(2-\/^).
[Hint. First write as (H-\/2 i)(2— VSi)- Now proceed as in

Ex. 1, obtaining the final result (2+ V6)+i (2\/2— Vs)-]

' {-l+'^{-l-'^- ' a+v^)=-(i-V^2)^

Express each of the following fractions with a denominator con-

taining no radicals:

6.
1

6.
^~ V-3 . 7 °+fc^,

' 3--\/^ 2+\/33' '

o-6i"

8. If a; =
~'^"'"^~^

, show that 3a^+2x+l = 0. It follows that the
o

indicated value of a; is a root of the given equation. Such roots are

called imaginary roots.

9. Show that in each of the following the value given for x is an
imaginary root (see Ex. 8) of the corresponding equation.

(a) x= ~^'^^'^ ;a?+x+l==0.

(6) _^^3+V-7 . 2a?_3x+2=0.

_K W q
(c) x = ——-

; 4ar'+l(te-(-7=0.

10. Is»=2-|-V^arootof ar'+2s+3=0? Why?



CHAPTER II

QUADRATIC EQUATIONSf

11. Solution by Inspection. Pkoblem. It is desired to

cut out a rectangle which shall contain 4 square inches and

be 3 inches longer than wide. What must be its dimensions

(length and breadth)?

Solution. Let x represent the breadth.

Then x+3 will be the length and, by the

rule for determining the area of a rectangle,

we shall have

(1) x{x + 3)=4,

or

(2) 3? + 3x= 4:.

We here meet with what is known as a quadratic

equation, that is, one containing the square (but no higher

power) of the imknown quantity x. Moreover, we see by

inspection that the value x=l satisfies this equation, since

with x=l the left side becomes 1^+3- 1, which reduces to 4

as required. The dimensions sought are, therefore, 1 inch

and 1 inch + 3 inches, or 4 inches. Ans.

12. Completing the Square in a Quadratic Equation.

Suppose now that in the problem of § 11, we require that the

area shall be 5 square inches instead of 4 square inches, other

conditions remaining the same. Then the equation which

we shall have to solve will evidently be [compare (2)]

(3) a;2+3x= 5.

This equation is not easily solved by inspection, as was done

with (2), but it can be solved, as we shall now show, by an

ingenious method known as completing the square.

f This chapter may be omitted by those already familiar with the

elements of quadratic equations. Such students may pass at once to

Chapter III, which deals with the general properties of such equations.

28
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Add 9/4 to each member of (3), giving

V 9 Q Q 2Q
(4) x'+3x+g=

5+l'
or x^+3x+| = ^-

Here the left member is the same as (x+^j , since by
the familiar formula ^ ^

we obtain

3\^ 9
x+^j =x-^+3x+^-

Thus, (4) may be written

Equation (3) has now taken a form (5) wherein the left

member is a perfect square. Consequently we have only to

extract the square root of each member of (5) in order to

obtain

3 ^^ ,3 1^—
(6) ^+2=\T' °^ a;+2= 2V29.

from which it follows that

(7) a;=|v^-| or x= ^(V29-3).

Substituting for \/29 its approximate value 5.385, as given

in the Tables, we have finally

a;=2(5.385-3)=2 of 2.385= 1.192 (approximately).

Hence the required dimensions of the rectangle are

(approximately) 1.192 inch and 1.192 inch + 3 inches= 4.192

inches. Ans.

These values for the two dimensions are correct to three places of

decimals. The exact values, of course, cannot be found, since -\/29

cannot be expressed exactly.
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13. The Two Solutions of a Quadratic Equation, It is

important to observe at this point that if we inquire simply

what values of x satisfy the quadratic equation (3), that is,

without any reference to the rectangle, we may find two such

values. In fact, in passing from equation (5) to (6), we should

remember that the square root of 29/4 is either + iv^ or

— iV^, since either of these when squared gives 29/4. If

we take the value + 2-\/29 we get (6), whichjeads to the

value of X given in (7), but if we take — 1^29, we get in-

stead of (6) the equation

from which we obtain

(9) x= -iV29-|= -^(•n/29+3) = -4.192 (approx.).

In reaUty, then, there are two values of x which satisfy

(3), namely iiV^-3) and -^(V29+d). These taken

together are called the roots of the equation. In the rectangle

problem of § 12 we could not use the second of these roots

since it is a negative quantity, and there would be no meaning

to a rectangle having negative dimensions. However, prob-

lems frequently arise in which we can use both roots, as will

be illustrated presently.

For convenience, the symbol ±, read plus or minus, is

frequently used in expressing the two roots of a quadratic

equation. Thus, the two roots of (1) may now be expressed

concisely in the form

a;= -2=^2^29, or x=2(-3±V29).

14. Application to Any Quadratic Equation. A careful

examination of the process followed in §§ 12, 13 for arriving

at the two roots of the special quadratic equation

a;2+3a; = 5

shows that what was added to both sides in order to complete
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the square on the left was 9/4, which is (3/2)2, ^j, ^j^g square
of half the coefficient of the first power of x ia the given

equation. More generally, it is now to be observed that if

we have any quadratic equation of the form

(10) x'^-^mx = n,

where the coefficients m and n are given numbers, we may
likewise complete the square and solve by adding to both

members the square of half the coefficient of the first power
of x; that is, by adding {m/2y. In fact, we thus obtain from

(10) the equation

or

«+f =•+?
2

after which we may evidently proceed in all cases to solve

as m steps (5), (6), (7) and (8) of §§ 12 and 13. Thus we
may state the following rule.

Rule. In order to solve any quadratic equation of the form

x^+mx — n

first complete the square of the left member by adding the square

of half the coefficient of x to both sides of the equation. Take the

square root of both members of the resulting equation, giving the

sign ± to the right member of the result. Solve the two first

degree equations thus obtained for x.

It is to be observed that this rule applies only in case the

coefficient of x^ in the given equation is 1. It does not apply,

for example, to the equation

3a;2+5a;=12.

However, in this case we have only to divide the "equation
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through by the coefficient of x^, namely 3, in order to cause

the equation to take the form

and to this the rule may now be applied directly, inasmuch

as the coefficient of x^ is 1. Similarly, any quadratic equation

whatever may either be solved directly by the rule or after

division of both members by the coefficient of x^ in case this

coefficient is different from 1. Illustrative examples of both

these species of applications occur below.

Example 1. Solve the quadratic equation

x2-10x = 5.

SoLtJTioN. Here, the coefficient of x^ being 1, we may make direct

appUcation of the rule. Thus, the coefficient of a; is —10 so that the

square of half this number, which is ( —5)^ or 25, is to be added to both

members, giving the equation

a^- 102+25 = 30

which may be written

(x -5)2 = 30.

Hence, extracting the square root of both members, we have

x-5 = ±\/30.

The two desired roots are therefore

x = 5±\/30-

Check. Placing the root 54-\/30 for x in the left member of the

given equation, we obtain

(5+V30)2-10(5+ V30)=25+10-v/30+30-50-10-v/30

which, upon noting cancellation, reduces to the right member, or 5.

Similarly, for the other root, 5 — -y/so, we have

(5-\/30)2-10(5--v/30)=25-10V30+30-50+10\/30 = 5.



.3 ^J81 = ±9

II, § 14] QUADRATIC EQUATIONS 33

Example 2. Solve the quadratic equation

2a?-3a;-9 = 0.

Solution. The coefficient of a^ being 2, we first divide through by

2, transposing also the —9, in order to obtain an equation of the species

mentioned in the rule. Thus, our equation becomes

The rule may now be applied directly, the details being as follows:

Completing the square by adding (—3/4)^, or 9/16, to both sides,

^ 2 ^"^16 2"^ 16 16

Extracting the square root of each side,

181

Vr6=
Hence the roots are

Q Q 3
a; =2=*=/ , that is a: =3 and s = — g'

Check. 2-32-3-3=2-9-9 = 18-9 = 9.

/ SY / 3\ 9 / 3\ 9
,
9 „

Again, 2{-
^
j - 3(^- ^j

=2 • j-3(^- ^j =2+2=9-

ORAL EXERCISES

In each of the following equations, state what must be added to

each side of the equation in order to complete the square.

1. a?+4a;=5. 6. a^+|a;=f

2.3?+5x=-3. 7. i?+2ax = 10.

3. a?-7a; = l. 8. ^+2{a+b)x= c.

4. 3?+18x = li4. 9. 3?+(a+b)x=c.

5. a?-l|a; = 5. 10. 3?-{m-ri)x = p.

EXERCISES

Find the two roots of each of the following equations and check

your answers. Whenever radicals present themselves, evaluate each

root correct to three decimal places by use of the Tables.

1. x2+2a; = l. 4. 3a?+4a; = 7. 7. 2a;+3fx2 = 4.

2. 3?+6x = 16. 6. 53?-6x=8. 8. a?+5=-^-

3. 3? -8x-20=0. 6. 3a;2^73.=26. 9. 3a?-5i=-l.
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10. 9x2 -18a;+4 = 0. 2 3a

11. Zx'+ix = l-l 3a;-l+2a;-5~°-

[Hint. First clear of fractions.] ... „

o , . ^ r 16. 2x2+5a;=-4.
1, 3x+5 2a-5" a;+4~** a;-2 17. Z:^-'lx=-b.

18. 3x(x+l)-(x-2)(x+3)=2+ (l-x)2.

19
^+a:-l ^-x-\

^^- X2+X+1'^X2-X+1

20. 3(2x-5)(x+l)-2(3x+2)(2x-3)=x-9.

15. Literal Quadratic Equations. Such equations are

solved by the same methods as employed in solving

quadratic equations with numerical coefficients.

Example 1. Solve the equation

23r—ax = ^(x +a)

.

Solution. Clearing of fractions

4x2_ 2ax = ox +o2.

Hence

, 3a o^

4^~ 4

Completing the square, following the rule in § 14,

„ 3a
, /3aV a"

,
/3aV o^

,
Qa" 25a^

^-4^+1^^ =4 + V8-/ =4+-64= m:-

Extracting the square root of each side.

3a ^5a
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Example 2. Solve the equation

X X

SoLtTTioN. Clearing of fractions, we have

a;(a;+l)-a;(a;-l)=TO(x-l)(a;+l),

or

a? +a;—a^ +a; =ma?— TO.

Hence

TOO?— 2a;= jn,

or

a?--a; = l.m
Completing the square,

TO \m/ \m/ nfi

Extracting the square root of each side,

Hence, the two roots are

Since ot^+1 is not a perfect square, these roots cannot be further

simplified.

EXERCISES

Solve each of the following equations for x, reducing your answer to

its simplest form.

1. ar'+4oa;= 12a2.
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13.
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Example 1. Solve the equation

x(x-l)(x+2)(x-4)=0.

Solution. Since the right member is 0, the equation will be satisfied

in case x = 0, or x— 1=0 or x+2 = or a;—4 = 0. Hence the roots are

0, 1, -2 and 4.

Example 2. Solve the equation i'— 1=0. Factoring, we find

(x-l){a?+x+l)=0.

The equation x—1=0 gives x = l as one root.

The equation x^4-a;+l = is a quadratic equation whose roots

are found (by completing the square) to be — J^ ± H V— 3.

The roots desired are therefore 1 and — J^ =fc J^V— 3.

Example 3. Solve the equation

a?+x2 = 4(l+x).

We have

x'+a?-4(l+x)=0,
or

x2(x+l)-4(x+l)=0.
Factoring,

(x+l)(x2-4)=0, or (x+l)(x-2)(x+2)=0.

Hence the roots are —1, 2 and —2.

EXERCISES

Solve each of the following equations by factoring.

1. a?+5x+6 = 0. 2. x2-6x = 27.

3. 6x2-x-15 = 0.

[Hint. Factor into (3x-5)(2x+3)=0.]

4. 4x2+5x-6 = 0. 6. 12x2-5x = 3.

6. 3oV+10ox = 8. 7. x^ = 16.

[Hint to Ex. 7. Write first in form (x^- 4) (x^+4) = 0.]

8. a? =27.

[Hint. Recall the formula x'-a' = (x-a)(x''+ox+a^).]

9. x*-5x2+4=0. 12. 8(a?-l)+3(x-l)=0.

10. (2x-l)(5a?+4x-3)=0. 13. 2x^+2x^=-x+l.

11. 3(x='-l)-2(x+l)=0. 14. a?-(a+b)x+ab = 0.
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18. Equations in Quadratic Form. If an equation may be

brougtit into the form of a quadratic by the use of a new

letter it is said to be an equation in quadratic form. Having

once brought it into such a form, its solution is readily

effected by the methods already explained.

Example 1. Solve the equation

a;^-132='+36 = 0.

Solution. Let 3? = y. Substituting y for 3^ in the equation, we

obtain y^-13y+3& = 0.

Solving, we find that the roots of this quadratic are

2/ = 4 and y = 9.

Hence a^ = 4 and a?=9. Therefore a;=±2 and a;=±3, and these

are the desired roots of the original equation.

Example 2. Solve the equation

(2x-3)2-6(2x-3)=7.

Solution. Substituting y for 2i— 3, we obtain

y'-6y=7.

Solving,

2/ = 7 and y= —1.

Hence
2x-3 = 7 and 2x-3=-l.

Therefore

x = 5 and x = l. Ans.

Example 3. Solve the equation x+ \/x = 12.

Solution. Substituting y for -y/x, we obtain

y'+y = 12.

Whence, solving,

y= —i and y = Z.

Therefore

\/x= —4 and \/x = 3.

Of these two possible values of y/x, we are here obliged to throw

out the value —4, because the form of our original equation implies

that, whatever x may be, its positive square root is to be used. Other-

wise, the equation would have read x— Vx = 12.

From the remaining possibility, namely •\/x = 3, we obtain upon

squaring, x = 9.
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Therefore the equation has one root, namely a; =9.

Check. 9+ V9 =9+3 = 12.

Note that if an equation contains radicals, care must

be taken, as illustrated in the above solution of Ex. 3, to

retain only those roots which satisfy the equation when each

of its radicals is taken with its indicated sign. This will be

further illustrated in § 19.

EXERCISES

Solve, by the method of substitution employed in § 18, each of

the following equations and verify your answer in each case.

1. x^-5a;2+4 = 0.

2. a;* -7.1?+12 = 0. «2+l^ X 2

3. 4a;*-13a^+9 = 0.

4. 27a;*-35a;^+8 = 0.

6. (a;-2)H2(x-2)=3.

6. (a^-2)H2(x2-2)=8.

7. 3a;* -5x4 = 2.

8. x-5+2Vx-5 = 8.

9. x-3 =21-4V'x-3.
2S

12'

x^
[Hint. Let—— =i/.]

x+l

10.
a? x+l

12. 2x-6V2x-l=8.

[Hint. Adding — 1 to both mem-
bers, we obtain

(2x-l)-6v'2^^ = 7.]

13. x = ll-3\/x+7.

14. 3x-^+5x-* = 2.

15. 3x-4- 7x^=4.

16. 2x2- .,/a;2_2x-3 = 4x+9.

'' \7+2x^ \7-2x 2^

19. Radical Equations. Equations containing radicals

are frequently called radical equations. They may often be

solved in the manner illustrated below.

Example. Solve the equation

V2x+5- •\/x+2= Vx-l.
Solution. Squaring

2x+5-2V(2x+5)(x+2)+x+2=x-l.
Collecting terms and transposing,

-2 V'(2x+5)(x+2) = -2x-8.

or, dividing through by —2,

V(2x+5)(x+2) =x+4.
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Squaring again,

(2x+6)(x+2) = (x+4)2,

or

2a?+9x+10=a;H8x+16,
or

x='+x = 6.

Solving,

x=2 and x= —3.

Of these values of x, we must retain only those which satisfy the

given equation when due regard is taken of the signs of its radicals, as

explained at the close of § 18. Thus, with x = 2, the equation becomes

•\/9— \/4= a/I) or 3—2 = 1. This being a true equation, x=2 is a

root. Again, with x = —3, the equation becomesV — l — \/ — 1 = a/— 4,

or 0= •%/— 4, which is false. Hence —3 is not a root.

EXERCISES

Solve, by the method shown in § 19, each of the following equa-

tions and verify your answer in each case.

1. a;-l+V'x+5=0.

2. V3x+T-2V2x=-3.
3. \/4x+17+Vx+l-4 = 0.

4. V2x+l=2Vx- Vx^-
5. \/x-cfi+ Vx+2a2= Vx+7a2.

4x+l
6. 2V'5x-V^x^ = -7===-

V2x—

1

7. V4X+3+ V2x+3= V5X+1+ Vx+S.

8. \/a—x+\/b—x= \/a+b— 2x.

APPLIED PROBLEMS

1. Divide 20 into two parts whose product is 96.

[Hint. Let x be one part. Then 20—x will be the other part and

we shall have x(20—x)=96.]

2. Find two consecutive numbers the sum of whose squares is 61.

[Hint. Two numbers are called consecutive when the larger is 1

greater than the smaller.]

3. A rectangular garden is 12 rods longer than it is wide and it

contains 1 acre. What are its dimensions?

4. By increasing each of the edges of a certain cube by 1 inch the
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volume became increased by 19 cubic inches. What was the original

length of each edge?

5. A polygon of n sides has \n{n—3) diagonals. How many sides

has a polygon with 54 diagonals?

6. The inner of two concentric circles has a radius of 1 inch. What
must be the width of the ring between the circles in order that its area

may equal that of the inner circle?

[Hint. The area of a circle is (approximately) 22/7 times the square

of its radius.]

7. If a train had traveled 6 miles an hour faster it would have
required 1 hour less to run 180 miles. How fast did it travel?

[Hint. Time — Distance -t- Rate .]

8. A man can row down stream 16 miles and back in 10 hours. If

the stream runs 3 miles an hour, what is his rate of rowing in still water?

9. Several persons hired an automobile for $12, but three of them
failed to pay their share and as a result each of the others had to advance

20 cents more. How many persons were in the party?

10. A cistern is filled by two pipes in 18 minutes; by the greater

pipe alone it can be filled in 15 minutes less than by the smaller. Find

the time required to fill it by each.

11. From three equal sticks are cut off lengths of 7, 8 and 15 inches

respectively; the remaining lengths form a right triangle. How long

were the sticks?

[Hint. See formula 6, § 7.]

12. What is the area of a square whose diagonal is 1 foot longer

than a side?

13. A rectangle of perimeter 34 inches is inscribed in a circle of

diameter 13 inches. Find its sides.

14. In order to get from one corner of a rectangular city park to the

opposite corner I must go 160 yards round the sides, and of this amount

I could save 40 yards if I were allowed to cut diagonally across. What
are the dimensions of the park?

15. Two airplanes pass over Chicago, one flying east at 40 miles

an hour, the other south at 30 miles an hour. The faster machine passes

at noon and the other one-half hour later. When are the machines 136

miles apart?

16. The formula

h = a+vt-16(^
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gives, approximately, the height hoi a, body at the end of t seconds if it

is thrown vertically upwards, starting with a velocity of v feet per second,

from a position a feet high.

From the above formula, show that

v+Vv^+64:{a-h )*"
32

and interpret this result in words.

17. By means of the result in Ex. 16, find how long it will take a

sky-rocket to reach a height of 796 feet if it starts from a platform 12

feet high with an initial velocity of 224 feet per second.

18. When a body is thrown vertically downward from a point a feet

high and with an initial velocity of v feet per second, its height at the

end of t seconds is given by the formula h = a—vt— l&t^, which, when

solved for t gives

t = ^^
• (Compare Ex. 16).

By use of this result, find to the nearest second the time it will take a

ball to reach the ground if thrown vertically downward from the top

of the Eiffel Tower with an initial velocity of 24 feet per second, the

height of the tower being 984 feet.

19. A stone is dropped into a well and 4 seconds afterward the

report of its striking the water is heard. If the velocity of sound is taken

as 1190 feet per second, what is the depth of the well?

[Hint. See Ex. 18.]

20. When s feet of wire are stretched between two poles L feet

apart (the two points of suspension being regarded as of the same height)

the sag d of the wire in feet is given by the formula

-4
f3Ls-3L2

Solve this formula for L and interpret your answer.

21. The whole surface S of a right cylinder of height h. and radius r

is given by the formula S = 27rr(r-|-/i). Solve this for r and interpret

your answer in words.

22. A soap-bubble of radius r is blown out until the area of its outer

surface becomes double its original value. Show that the radius has

thereby been increased by the amount r {y/2 — V).

[Hint. The area of a sphere whose radius is r is 47r)^.]



CHAPTER III

PROPERTIES OF QUADRATIC EQUATIONS

20. The Typical Form of Every Quadratic. We may
evidently regard the equation

(1) ax2+6x+c=

as the typical form of every quadratic equation, because every

quadratic, being of the second degree, can be brought iato

the form (1) by a suitable rearrangement of its terms. It is

to be here understood that the coefficients a, b, and c repre-

sent numbers which are in no wise dependent upon the

unknown number represented by the letter x, and that a is

not zero, for if it were, (1) would reduce to bx+c=0 and

hence no longer be an equation of the second degree.

EXERCISES

Arrange each of the following quadratic equations in the tjfpical

form (1) and state the values of a, b, and c for each.

1. 2a;2+5 = 3.(j._i)+7.

Solution. Transposing all terms to the left, we have the new equation

2x^+5—x^+x—7=0, or, combining, x^+s—2 = 0.

This is in the form (1) with o = 1, 6 = 1, c = — 2.

2. 3x(x-l)=x2+2x-l. 4. I —= 2.
X x+ l

3. 4t? = (x-l)(x+l).
6. (x+mf+{x-mf = &mx.

Solution op Ex. 5. We have 3?+2mx+m^-\-x^—2mx+m?—5mx = 0.

or, combining terms,

2x2-5mx+2m2 = 0.

This is in the form (1) with a = 2, 6= —5m, c = 2m^.

6. 2x2+—=(m+7i)x. 8. 3?+(.mx+bf =A

7 x2-pg_x+P 9. i^ ^ tf -Z^

x-g 2 '
' x+2 x-2 x(4-x^)''

43
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21. Solution of the General Quadratic. Since the equation

(1) ax^+bx+c=

is the typical form of every quadratic, it is spoken of as the

general quadratic equation. We may regard it as a Hteral

equation (§ 7) and solve it by the method of completing the

square (§ 12) as follows

:

Transposing the term c to the right, then dividing through

by a and finally adding [b/(2a)f to both members of (1), it

becomes

The left member is now a perfect square, namely

while the right member readily reduces to

f)^— 4ac

4a2

Thus (2) is the same as

(^^ V+2a)^^^'
By extracting the square root of each member of (3) we

obtain

,
b ±\/b^-Aac

(4) a;+— =
2a 2a

Hence, upon transposing the 5/ (2a) in (4) it follows that

the two values of x (which for convenience we will now call

Xi and 0:2) which satisfy (1) must be

(K) -b+Vb^ — 4ac -b-Vb^ — 4:ac

*'
=

2-a
'

'"'^
2-a
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These, then, are the values of the two roots, or solutions,

of (1). By naeans of these formulas, we may at once solve

any given quadratic, as illustrated below.

Example. Solve the quadratic 4a?+8x— 5 = 0.

Solution. Here a = 4, 6 = 8, c= — 5. Substituting these values for

a, 6 and c in the formulas (5), it appears that the two roots in the present

case (when written together in condensed form) are

-8±V82-4(4)(-5)
2-4

which reduces to

-8±\/l44 „^ -8±12
, or .

8 8

Taking the + sign, this becomes (—8+12)/8, which reduces to 1/2,

while if we take the — sign, it becomes (—8— 12)/8, which reduces to

-5/2.

The two desired solutions are therefore 1/2 and —5/2.

Check. 4(^)^+8(1) -5=4(i)+4-5 =l+4-5 = 0.

Again,

^{-ff+s{-l)-5=i{Y)-»{i) -^=25-20-5 =25-25 = 0.

EXERCISES

Solve each of the following quadratic equations by use of the for-

mulas (5).

1. 23?+5x+2=0. 10. x^—mx =mn—nx.

2. 3a?+llx+6 = 0. [Hint. First arrange in the

3. 6a? -7s+2 = 0. form (1). See § 20.]

4. 4a?+4a;— 15=0. 11. 3?+m.x=mn+nx.

6. 3a?-13x = 10. 12. 3?-3bx=2ax-&ab.

6. 2a?+32; = l. 13. 3?+4mx+3nx= -12mn.

7. 3a?+2a;-4=0. 14. 3?-2ax-a^= 0.

8. 3a?-6a;=-2. IB. 6x^+3ax = 2bx+ab.

9. a?-6x+10=0. 16. i?+px+q=0.

17. By substituting into equation (1) the values of xi and xa given

in (5), verify the fact that xi and X2 satisfy (1).
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22. Nature of the Solutions. Discriminant. If the coeffi-

cients a, b, c in (1), § 21, are real numbers, the form of the

two solutions (5) there obtained shows that neither solution

can be imaginary unless the expression 5^— 4ac has a negative

value. In fact, these solutions contain no radicals except

"v/fe^— 4ac and this is imaginary only when 6^—4ac has a

negative value (§ 10). If, then, the coefficients a, b, c of any

given quadratic (1) are such that 6^— 4ac is positive the two

solutions will be real, while if 6^— 4ac is negative the two solu-

tions will be imaginary.

Moreover, if &^— 4ac is equal to zero, the two solutions will

be equal to each other, since then \^b'^— iac reduces to zero,

so that each of the two roots [see (5)] reduces to the simple

expression —b/(2a).

Finally, if 6^— 4ac is a perfect square, it is possible to find

the exact value of -\/W--iac and hence, in case a, b, c are

rational numbers, it then follows from (5) that the two roots

of the given equation will reduce to rational numbers; while

if, on the other hand, 6^— 4ac is not a perfect square, the two

roots of the given equation will not be so reducible and will

therefore be irrational.f

fThe precise meaning of the terms rational number, irrational num-
ber, real number, and imaginary number, is as follows: A real number
is one whose expression does not require the square root of a negative

quantity, while an imaginary number is one whose expression does

require such a square root. It can be shown that all numbers of algebra

fall into one or the other of these two general classes. Thus 1, 3, —2,

1/2, —2/3, \/2, l+ Vs are all real numbers, while \/^2, V — 1/2,

2+\/— 3 are all imaginary. Moreover, whenever a real number can be

expressed in the particular form p/q, where p and g are integers (positive

or negative, or zero, except that q must not be zero) it is called a

rational number, while if it cannot be so expressed it is called an
irrational number. Thus, 1/2, —2/3, 4/7, 5, 73, —10 are rational,

while v^ V^, V2A 'V^IA "V^ 1+ Ve ,
t are irrational.

For the definitions of pure imaginary number and complex

number and a study of their properties, see § 10, page 26.
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In summary, then, we may state the following rule.

Rule. For any given quadratic equation ax'^-\-hx-\-c=
whose coefficients, a, h, c are real numbers, the two roots will he

(1) Real and unequal if b^—iac is positive;

(2) Real and equal if b^—iac^O, each root then reducing

to-b/{2a);

(3) Imaginary if b'^—iac is negative.

Moreover, if the coefficients a, b, c are rational numbers, the

two roots will be

(4) Rational if b^— 4ac is a perfect square;

(5) Irrational if b^—4:ac is not a perfect square.

Because of the manner in which the nature of the solutions

of a quadratic equation thus comes to depend upon the

value of 6^— 4ac, this expression is called the discriminant

of the quadratic equation.

Example 1. Determine (without solving) the nature of the roots

of the quadratic equation

a?-7a;-8=0.

SoLTJTiON. Here a = l, 6= —7, c= — 8. Hence the discriminant, or

b^—iac, has the value (-7)^-4(-8) =49+32 =81, which is positive.

Therefore, by (1) of the rule, the solutions are real and unequal.

Moreover, since 81 is a perfect square, namely 9^ it follows from (4)

of the rule that the two solutions are rational.

These results may be checked by actually solving the equation and

examining the nature of the solutions thus obtained.

Example 2. Determine the nature of the roots of the equation

3ar2+2x+l=0.

SoLtmoN. Here a = 3, 6 = 2, c = l. Hence, 6^—4ac=4— 12 = — 8.

Therefore, by (3) of the rule, the solutions must be imaginary.

Example 3. Determine the nature of the solutions of the equation

4c2-4a;+l=0.

Solution. Here o=4, 6=— 4, c = l. Hence fc''— 4oc = 16— 16=0.

Therefore, by (2) of the rule, the two solutions must be real and
equal.
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EXERCISES

Determine (without solving) the nature of the solutions of each of

the foUowing quadratic equations.

1. a?+Sx+6 = 0. 8. a^+x=-l.

2. a?-7a;-30 = 0. 9. 9x^-6x+l=0.

3. 2a?-3a;+2 = 0. 10. 4x2+6x-4 = 0.

4. 2s2_4x+l=0. 11. 2x2-9x+4 = 0.

6. 3x2-a;-10=0. 12. 7x2+3x = 0.

6. u?-x = l. 13. 4a^+16x+7 = 0.

7. 3?+x = l. 14. 9x2+12x=-4.

15. For what values of m will the roots of the quadratic equation

mV+lOx+1 =0 be equal?

Solution. Here (using the language of §20) a = n?, 6 = 10, c = l

and hence 6^— 4ac = 100—4m^. According to § 22, the roots of the given

equation will therefore be equal if m be so determined that 100— 4??i^ = 0,

that is, if TO^ = 25. Therefore the desired values of m are +5 and —5.

16. In each of the following quadratic equations, find the value (or

values) of m which will render the roots equal, and check your result

by actually using this value and solving the resulting equation.

(a) x2+12x+8to = 0. (c) (2x+ot)2 = 8x.

(6) (m+l)r'+mx+m+l=0. (d) 2mx^+x2-6TOX-6x+6TO+l=0.

17. For what values of h wUI the roots of the following quadratic

equation in x be equal?

23. The Sum and Product of the Solutions. We have seen

(§ 21) that the two solutions xi, x^ of any quadratic equation

ax^-\-hx+c= Q

are given by the formulas

-h+y/h^-^ac -&-\/&'-4ac
«!= ' X2=

2a 2a

It is now to be observed that if we add these two solutions

together, the radical cancels and we obtain the simple result

-26 b
Xi+X2= —— =

2a a
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Again, if we multiply the two solutions together, the result

reduces to a very simple form. Thus

_ (-by-i\/¥-4,acy 6^-(b^-4ac) 4ac c

4a2
"

4a2 ~4a2~a'
These results for Xi+Xi and Xi x^ may be summarized in

the following useful rule

:

Rule. In the general quadratic equation ax''-\-bx-\-c= 0,

the sum of the two solutions is — b/a, while the product of the

two solutions is c/a.

Example. State the sum and the product of the solutions of the

equation Sx^—2x+6=0.
SoLtTTioN. Herea = 3, 6= — 2, c=6. Hence the swm of the solutions

is -(-2)/3, or 2/3, while their product is 6/3=2.

EXERCISES
State (by inspection) the sum and the product of the solutions of

each of the following equations. Check your answer in Exs. 1, 2, 3, 4

by actually solving these equations and thus obtaining the sum and
product of the two solutions.

1. 3a?+63;-l=0. 4. 5a?-4x+2=0. 7. 2r^+ VS x--v/5 = 0.

2. 2a?-5rr+3=0. ^- 6^+7^ = 42-
g. a?+px = g.

3. a?-2x+l=0. 6. x2+-x+-=0.

9. Show that in the quadratic equation x'+mx+n=0 the sum of

the solutions is —m and their product is n. This general result may be

stated in the following useful rule:

Rule. // in a quadratic equation the coefficient of 3? is 1, the sum of

the solutions will he the coefficient of x with its sign changed, while the

product of the solutions will be the remaining {last) term.

Explain and illustrate this in the case of the equation x^— lOx+ 12 = .

10. Apply the rule stated jn Ex. 9 to determine the sum and the

product of the solutions of each of the following quadratic equations.

(o) x2-4x+3=0. (e) 3?-V2x+-\/5=0.

(6) x2+x-l=0. CO 23?-5x+S=0.

(c) x^-10x+ 13=0. [Hint. First divide through by 2.]

(d) x2-^x+^ = 0. (g) 3x2+-x-Vs=0.
2 3 o
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24. Fonnation of Quadratic Equations Having Given

Solutions. We have seen in Chapter II (also in § 21) how to

solve a given quadratic equation, that is, how to determine

the two values of the unknown number x which satisfy it. It is

frequently desirable to reverse this process, that is, to deter-

mine the quadratic equation which has two given numbers

as its solutions. This can always be done, as is shown below.

Example. Form the quadratic equation whose solutions are —5
and 2.

Solution. If x=— 5, then a;+5=0. Likewise, if x=2, then

a—2 = 0. Hence the equation {x-\-S){x—2)=0, or x^+3x— 10 = 0, will

be satisfied when either x= —5 or x = 2. (See § 16.)

The desired equation, whose solutions are —5 and 2, is therefore •

a?+3a;-10=0.

This result can be checked, of course, by solving the equation thus

found and noting that its solutions turn out to be —6 and 2, as desired.

Similarly, if the given values are any two numbers a and h,

the quadratic equation having these values as its solutions is

{x-a){x-l)=0, or x^-{a^-h)x+ah= 0.

EXERCISES

Form the quadratic equations whose roots are as follows:

1. 1, 2. 6. VS, - V2. 11. 2+v^,2--v^.

2. -1, -2.

3. 3, 1.

3

*• -2' ~3"

5. V^.VS.
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25. Graphical Solution of Quadratics. Consider the quad-

ratic equation

(1) x^-3x-4:=0.

Let us represent the left member by y; that is, let us place

(2) y= x'-3x-4:.

Now, if we give to x any special value, equation (2) deter-

mines a corresponding value for y. For example, if x= 0,

then 2/= 0^—3X0—4=— 4. Again, if x= l, then

y=12-3Xl-4=-6.

The table below shows a munber of a;-values with their

corresponding y-values determined in this way.

AVhen x=
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The graphical study which we have just made for the

special equation x^— 3x—4 = leads at once to the following

general statements.

Every quadratic equation has a graph which is obtained by

first placing y equal to the left member of the equation (it being

understood that the right member is 0), then letting x take a

series of values and determining their corresponding y-values,

plotting the points {x, y) thus obtained, and finally drawing

the smooth curve through them.

The x-values of the two points where the graph cuts the

X-axis will be the solutions of the given quadratic equation.

EXERCISES

Draw the graphs of each of the following equations, and note

where each cuts the a>axis. In this way determine graphically the

values of the solutions, and check the correctness of your answers by
actually solving the equation.

1. ^-x-2 = Q. 5. 2x2+5x+2 = 0.

2. ar*-10x+24 = 0. 6. :^-7x+\2 = Q.

3. a?-2x-15 = 0. 7. x2+7x+12 = 0.

4. 3x2_ga. = 3_ 8. 2^+^x = 9.

26. Determining Graphically Whether Solutions Are Real

or Imaginary. In order to apply the method described in

§ 25 for determining graphically the solutions of a given

quadratic it was essential that the graph should cut the

a;-axis. However, quadratic equations may easily be found

whose graphs do not cut or touch the cc-axis at all. For
example, consider the equation

(1) a;2-6x+15 = 0.

Proceeding as in § 25 to draw the graph, we place

(2) 2/ = x2-6a;+15,



Ill, § 27] PROPERTIES OF QUADRATIC EQUATIONS 53

and determine various pairs of values (x, y) which satisfy

this equation. The table below shows several such {x, y)

pairs.

When x=
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two points, while if the solutions are imaginary the graph

fails to cut the x-axis at all. Suppose now that we have a

quadratic equation whose two solutions are real and equal

to each other, for example the equation

(1) 4x2-12a;+9 = 0.

Here the discriminant (§ 22) is equal to

(-12)2-4X4X9 = 144-144= 0,

so that the roots must be equal by the rule

of § 22.

If we now proceed to draw the graph

corresponding to (1) in the usual manner

by placing y = 4:X^— 12x+9, it appears that

the resulting graph just touches the x-axis

instead of actually cutting through it. This

"

was to be expected, since the equahty of

the roots means that there is but one root,

and this, when considered as in § 26, can

be possible only when the graph merely touches (is tangent

to) the X-axis.

Thus, in general, we.have the following result. // the two

roots of a quadratic equation are real and equal, the graph of

the equation will be tangent to the x-axis, and conversely.

2

Kg. 15

EXERCISES

Draw the graph of each of the following equations and examine
whether they do or do not illustrate the statement at the end of § 27.

If not, what statement is illustrated (see §§ 25-27).

1. x2-2x+ l=0.

2. 3?-6x+ l2 = 0.

3. x2+6x+12 = 0.

4. 4x^+ix+l=Q.

5. x2-2x-8 = 0.

6. 3i2+4x+l=0.

7. 3x*+4a;+2=0.

8. 4a?'-12x+9 = 0.



CHAPTER IV

SIMULTANEOUS QUADRATIC EQUATIONS

I. One Equation Linear and the Other Quadratic

28. Graphical Solution. In § 6 we have seen how to

determine graphically the solution of two simple (first

degree) equations each of which contains the two unknown
numbers x and y. The method consists in drawing the graph
of each equation, then observing the x and the y of the point

where the two graphs intersect. The particular pair of

values (x, y) thus obtained constitutes the solution.

We often meet with a pair of equations similar to those

just mentioned except that one (or both) of the equations is

not of the first degree. For example, consider the pair, or

system, of equations

(1) x-y= l,

(2) a;2+2/2 = 25.

In order to solve this pair of equations, that is, to find the

particular pair (or pairs) of values {x, y) which will satisfy

them both, we may proceed graphically in a manner precisely

analogous to that employed in the study of simple equations.

Thus the graph of (1) is found (as in § 6) to be the straight

line shown in Fig. 16. In order to draw the graph of (2), we
first solve this equation for y in terms of x, thus obtaining

(3) 2/=±\/25^=^.

By giving various values to x in (3), we obtain the y-values

corresponding to each. The table below shows the ^/-values

thus obtained corresponding to a; = 0, +1, +2, etc., to x= +5.

When a; =
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1
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Check;. For the solution (a; = 4, y = 3) we have a;— j/ =4— 3 = 1,

and a^-f2/^ = 16 -1-9 = 25, as required.

For the solution {x=—3, y=—i) we have x—y=—S — (—i) = l,

and x'+^ = 9+ lQ = 25, as required.

The following are other examples of the graphical study

of non-Unear simultaneous equations.

Example 1. Solve the system

(4) 2x-9y+lQ = Q,

(5) 422+V = 100.

Solution. The straight line representing the graph of (4) is drawn
readily. To obtain the graph of (5), we have

V = 100-4a;2.

Hence
2/2 = ^(100-4x2) =|(25-A

and therefore

(6) 2/=±|V25=?.
Corresponding to (6), we find the following table:

When x=
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Example 2. Solve the system

(7) 2x-2/=-2,

(8) x!/ = 4.

Solution. The graph of (7) is the straight line shown in Fig. 18.

To obtain the graph of (8), we have

(9) y=~-

from which we obtain the following table:

When X =
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Example 3. Consider graphically the system

(10) x+y = 10,

(11) x2+2/'= 25.

Solution. The graph of (10) is found in the usual manner, and
is represented by the straight line in Fig. 19. The graph of (11) has
already been worked out (see discussion of (2)), being a circle of radius

Fig. 19

5 jvith center at the origin. The peculiarity to be especially observed

here is that these two graphs do not intersect. This means (as it naturally

must) that there are no real solutions to the system (10) and (11); in

other words, the only possible solutions are imaginary.

Likewise, whenever any two graphs fail to intersect, we may be

assured at once that the only solutions their equations can have are

imaginary. The system (10) and (11) and other such systems will be

considered further in the next article.

EXERCISES

Draw the graphs for the following systems and use your result to

determine the solutions whenever they are real.

1 I
x = 2y,

•

Ix^ +2/^ = 20.

x+y = 7,

3xH^ = 43.

o / x-2y=-l,
6.

x+y = 7,

xy = 10.

\2x+y=7.

x+y=2,
y=^.

_ f2x+j/ = l,

\i/=4a^+2x+l.

g fx'+xy = 12,

\ x-y = 2.

a \x = &-y,
1x5+2/3 = 72.
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29. Solution by Elimination. Let us consider again the

system (1) and (2) of § 28.

(1) x-y=l,

(2) x^+y^= 25.

Instead of solving this system graphically, we may solve

it by eUmination; that is, by the process employed with two

linear equations in § 28.

Thus we have from (1)

(3) y= x-l.

Substituting this value of y in (2), thus ehminating y from

(2), we obtain

a;2+(a;-l)2= 25, or a;2+x2-2a;+l = 25,

or 2a;2-2a;-24= 0.

or, dividing through by 2,

(4) x2-a;-12 = 0.

Solving (4) by formula (§ 56), gives as the two roots

-(-1)+V(-1)^-4(1)"ML2) l+Vl+48 1+7
'"'

2
~

2
~

2
~^'

and

^^ -(-!)- V(-l)'-4(l)(-"l2) _ l-Vl+48_ l-7_ _
2 2 2"

When X has the first of these values, namely 4, we see

from (3) tjiat y must have the value y = 4:—l, or 3.

Similarly, when x takes on its other value, namely —3,

we see that y has the value y= —3— 1, or —4.

The solutions of the system (1) and (2) are, therefore,

(a; = 4, 2/ = 3) and (a;= — 3, 1/=— 4). Ans.

Observe that these results agree with those obtained

graphically for (1) and (2) in § 28.

Further applications of this method are made in the

examples that follow.
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Example 1. Solve the system

(5) 2x+2/ = 4,

(6) 3^+2/2 = 12.

Solution. From (5),

(7) j/ = 4-2x.
Substituting this expression for y in (6), we find

a^+ (16-16x+4x2) = I2,

or

(8) 5ar*-16x+4 = 0.

The two roots of (8), as determined by formula (§ 21), are

-(-16)±-v/0^n;6)2-4(5)(4) _ 16±V256-80 _ 16±Vl76^~
2(5)

~
10

~
10

_16±4Vn _8±2Vn
~

10
~

5 "
.

The first of these values, namely x = (8+2-\/ll)/5) when substi-

tuted in (7), gives as its corresponding value of y,

16+4-^/11 4-4v'n
y=^—

I

—=—^

—

The second value, namely 2 = (8— 2\/lI)/5, when substituted in

(7), gives as its corresponding value of y,

^ 16-4Vn 4+4\/lT
« = 4 = .

6 5

Hence the desired solutions are

8+2VT1 r 8-2vTI
= ' \x= )

5
j

5
,_ and < ^

4-4V1I 4+4vTl

To obtain the approximate values of the numbers thus obtained,

we have VH = 3.31662 (tables), and hence the above solutions reduce

to the forms

x = 2.9266, , fx = 0.2734,

2/= -1.8533, \2/ = 3.4533.

These are the solutions of the system (5), (6), correct to four "places

0/ decimals, which is sufficient for ordinary work.

|.
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Example 2. Solve the system

(9) x+y = lO,

(10) x2+!/2 = 25.

Solution. From (9), y = 10—x. Substituting this expression in (10),

a?+(100-20a;+x2)=25,

or

(11) 2:!;2_20a:+75 = o.

Solving (11) by formula, we find its solutions to be, after reduction,

10+ SV^ , 10-5v^^
x = and x =

2 2

Since these x-values contain the square root of the negative number

—2, they are imaginary. The j/-values are also imaginary, as appears

by substituting the x-values just found into (9), which gives the results

10- &\/^ , 10+5\/^
y = and y

The desired solutions of the systems (9), (10) are therefore

10+5V^ ( _10-5V^

and

l-
10+5\Ar2

i" 2 r 2

This result should now be contrasted with what we saw in Example

3 of § 28 regarding this same system (9) and (10). There we found

graphically that the solutions must be imaginary because the graphs

failed to intersect, but we could not find the actual imaginary numbers

which form the solutions.

EXERCISES

Solve each of the following systems by the method of elimination,

and, in case surds are present, find each solution correct to two places

of decimals by use of the tables.

[ x-y=5. \ x-2y = Z. 9. \Sy'^5x l?
Il0x+y = 3xy, i:^+3xy -2^ = 43,

\ y-x = 2.
'

\ x+2j/ = 10.

(x'+xy = 12, /x2+3x7/ = i/+23,

\ x-2/ = 2. •

\ x+3y = 9. 10.

/ x-2y = 2, /3x2-xj/-5/ = 5,

1x^+4^ = 25. \ 3x-5i/ = l.
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II. Neither Equation Linear

30. Two Quadratic Equations. In each of the systems

considered in §§ 28, 29 one of the two given equations was
hnear. However, the same methods of solving may often

be employed in case neither equation is linear. In such cases

four solutions may be present instead of two.

Example 1. Solve the system

(1) 9x2+16i/2 = 160,

(2) x'-j/' = l5.

Solution. Here only x^ and y^ appear and we begin by finding

their values. Thus, multiplying (2) through by 16 and adding the

result to (1), we eliminate 2/^ and find that 25x^ = 400, or

(3) x^ = 16.

Substituting this value of a^ in (2"), we find

(4) 2/^= 1.

From (3) and (4) we now obtain

(5) a: = ±4 and 2/=±l.

Forming all the pairs of values (x, y) that can come from (5), we
obtain as our desired solutions

and

(x=4, y = \); (a;=-4, j/ = l); (a;=4, y=-l);

(x= — 4, 2/= — 1). Ans.

Check. Each of these pairs of

values of x and y is immediately

seen to satisfy both (1) and (2). Let

the student thus check each pair.

When considered graphically,

equation (1) gives rise to an ellipse

(compare § 28, Ex. 1), while (2)

gives a hyperbola situated as

shown in Fig. 20. These two

curves intersect in four points

which correspond to the four solu-

tions just obtained.

Y
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Example 2. Solve the system

(7) xH2/' = 25,

(8) xy=-12.

Solution. Here we cannot proceed as in Example 1 because we

cannot find readily the values of x^ and y^. But if we multiply (8) by

2 and add the result to (7), we obtain

(9) 3?+2xy+y' = l.

Taking the square root of both members of (9) gives

(10) x+j/=±l.

Similarly, multiplying (8) by 2 and subtracting the result from (7),

a?-2xy+if = i9,

and hence

(11) x-y=±7.
Taking account of the two choices of sign in (10) and (11), we see

that they give rise to the four simple (hnear) systems:

(a) x+2/ = l, x-v = 7;

(6) x+y=-l,x-y=7;
(c) x+y = l, x-y=-7;
(d) x+2/=-l, x-i/=-7.

Thus we have replaced the

original system (7) and (8) by
the four simple systems (a), (6),

(c), and (d), each of which may
be immediately solved by elimi-

nation, as in § 28. Since the

solutions of (a), (6), (c), (d) are

respectively (x = 4, y=—3),
(x=3, 2/= -4), (x=-3, 2/ = 4),

and (x = — 4, 2/ = 3), we conclude

that these are the desired solu-

tions of (7) and (8). Ans.

The graphical significance of

these solutions is shown in Fig. 21, where the circle x^-l-3y^= 25 is cut

by the hyperbola xy= —12 in four points that correspond to the four

solutions just found.

Check. That these four solutions each satisfy (7) and (8) appears at

once by trial.

I Y
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While no general rule can be stated for solving two equa-
tions neither of which is linear, the following observation

may be made. Unless the equations can be solved readily

for x^ and 'ip- (as in Example 1), the system should first be
examined with a view to making such combinations as will

yield one or more new systems each of which can be solved

(as in Example 2) by methods already familiar. All solutions

obtained in this way should be checked in order to avoid false

combinations of the x- and ^/-values thus obtained.

EXERCISES

Solve each of the following systems, and draw a diagram for each
of the first three to show the geometric meaning of your solutions.

^-
1 2x^-2/2 = 31.

*•
\xy+u'= 15.

[Hint to Ex. 4. First add, then subtract the two equations, thus

showing that the given system is equivalent to two others each of

which may be solved as in § 29. Compare Ex. 2, § 30.]

fx'+xy+^^lSl, . ja^+xy = 77,
°-

\ x2+2/2= 106.
"•

\xy-Tf=12.

C^xy+2x+y = 25,

(xy-Q = 0, 10. ??^1^.
\x'+y'^ = xy+7. [ y x

*31. Systems Having Special Forms. The systems of equations

considered in §§ 29, 30 illustrate the usual and more simple types such

as one commonly meets in practice. It is possible, however, to solve

more complicated systems provided they are of certain prescribed forms.

We shall here consider only two such type forms.

I. When one (or both) of the given equations is of the form

aa^+bxy+cif = 0,

where the coefficients a, 6, c are such that the expression a3?-{-bxy+cy^

can be factored into two rational linear factors.
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Example. Solve the system

(1) x2+2x-2/ = 7,

(2) x^-xy-2^ = 0.

SoLtmoN. Here we see that (2) is of the form mentioned above,

since ^—xy—2y^ can be factored into {x—'2,y){x+y). (2) may thus

be written in the form

(3) {x-2y){x+y)=Q.

It follows that either

x—2y = Q, or x-\-y = 0.

Hence the system (1), (2) may be replaced by the two following systems:

U+2x-y = 7, _^, l3?+2x-y = 7,

\ x-2y = 0,
^"""^

\ x+y = 0.

Each of these two systems may now be solved as in § 30, and we
thus find that the solutions of the first system are

(x = 2, 2/ = l) and (x= -^, j/= —J),

while the solutions of the second system are

fx = i(-3+-v/37),
\y=U3-V27),

and
fx=-|(-3-\/37),

\?/=i(3+ V37).

The desired solutions of (1) and (2) consist, therefore, of these four

solutions just obtained. Ans.

II. When both the given equations are of the farm

ox^ +bxy -\-cy^ = d,

where a, h, c and d have any given values (0 included).

Example. Solve the system

(4) ^-xy+if = 3,

(5) a?+2xy = 5.

Solution. Let v stand for the ratio x/y; that is, let us set

(6) x = vy.

Substituting in (4) and (5), we find,

(7) v'y'-vif+y' = Z.

(8) «V+2j'j/' = 5.
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Solving (7) and (8) for y^,

(9) 2/2= ^

5

ir+2v

Equating the values of i^ given by (9) and (10),

5 3

Clearing of fractions,

(11) 2v^-\lv+b=0.

Solving (11) by formula (§ 21),

_ ll±Vl21-40 ll±V81 _ llzb9

4 ~
4 4 '

Therefore v = 5, or j;=^. Substituting 5 for v in (9), or (10),

Hence

Substituting -^ for w in (9) or (10), y^= i. Hence 2/= +2 or —2.

The only values that y can have are, therefore, l/V?, — l/Vv,
2, and -2.

Since a; = z;2/ (see (6)), the value of x to go with 2/ = l/\/7 is

a; = 5(1/ y/7) = 5/ -\/7. Similarly, when y=—l/ y/l we have

x =5(-l/V7) = -5/^/7.
Likewise, when j/=2 (in which case v=\, as shown above, then

by (6) we have x= \- 2 = 1.

Again, when y= —2, then x=^(—2) = — 1.

Therefore the only solutions which the system (4), (5) can have are

(x =5/V7, 2/ = l/\/7); (x=-5/-v/7, 2/=-l/V7); (x = l, 2/=2);

(a;= — 1, y= — 2); and it is easily seen by checking that each of these

is a solution. Ans.

32. Conclusion. Every system of equations considered in

this chapter has been such that we could solve it by finally

solving one or more simple quadratic equations. We have

examined only special types, however, and the student should

not conclude that all pairs of simultaneous quadratics can be
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solved so simply. In fact, the solution of simultaneous quad-

ratics in general involves a study of equations of higher degree

than the second such as considered in Chapter XI.

MISCELLANEOUS EXERCISES

Solve the following simultaneous quadratics. The star (*) indicates

that the exercise depends upon § 31.

^-
\ x+y = 7.

I xy = 7.

i.

2.

'•{
xy{x-

*10.

*11.

22/) = 10,

xy = 10.

lo?+xy+2)/ = n,

\ 2i?+5y^ = 22.

(2o?+xy-i/ = 0,

\ 23?+y = l.

-Sy-y'^S,
5xy—&if = 0.

6.

jxy+2x = 5,

\2xy-y = 3.

xif+xy=24:,

xi^+x='56.

a^— xj/ = 6,

3?-y' = 8.

8.

x^-y*=3m,
x2-2/2 = 9.

f 3^+2/2 = 100,

\(x+2/f = 196.

*9.

*'' {Ji

*13.

*14.

15.

|x2-7x2/+ 122/' = 0,

\ xy+3y-2x = 21.

\xy+2y' = S,

\a^+2xy = 12.

f x'-xy-y' = 20,

\:^-Sxy+2jf = 8.

/ x-2y = 2(a+b},

\xy+2yF = 2bib-a).

APPLIED PROBLEMS
In working the following problems, let x and y represent the two

unknown quantities, then form two equations and solve them. If

radicals occur, find their approximate values by use of the tables.

1. The sum of two numbers is 12, and their product is 32. What
are the numbers?

2. The sum of two numbers is 82, and the sum of their square roots

is 10. What are the numbers?

3. A piece of wire 48 inches long is bent into the form of a right

triangle whose hypotenuse is 20 inches long. What are the lengths

of the sides?

4. If it takes 52 rods of fence to inclose a rectangular garden con-

taining 1 acre, what are the length and breadth

of the garden?

5. If, in the adjoining figure, the combined

area of the two circles is 15^ square feet and
the distance CC between centers is 3 feet, what

/ 22 \
are the lengths of the two radii? I Take ir =— .1

V 7 / FiQ. 22
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6. Work Ex. 5 in case the circles are situated as in Fig. 23, taking

the shaded area to be 110 square feet and CC to

be 5 feet.

7. The area of a triangle is 160 square feet, and
its altitude is twice as long as its base. Find, cor-

rect to three decimal places (using tables), the base

and altitude.

8. The area of a rectangular lot is 2400 square

feet, and the diagonal across it measures 100 feet. ^'°' ^^

Find, correct to three decimal places, the length and breadth.

9. The dimensions of a rectangle are 5 feet by 2 feet. Find the

amounts (correct to two decimal places) by which each dimension must
be changed, and how, in order that both the area and the perimeter

shall become doubled.

10. Two men working together can complete a piece of work in 6 days.

If it would take one man 6 days longer than the other to do the work

alone, in how many days can each do it alone? (Compare Ex. 19, p. 12.)

11. The fore wheel of a carriage makes 28 revolutions more than the

rear wheel in going 560 yards, but if the circumference of each wheel

be increased by 2 feet, the difference would be only 20 revolutions.

Find the circumference of each wheel.

12. A sum of money on interest for a certain time at a certain rate

brought $7.50 interest. If the rate had been 1% less and the principal

$25 more, the interest would have remained the same. Find the prin-

cipal and the rate.

13. A man traveled 30 miles. If his rate had been 5 miles more per

hour, he could have made the journey in 1 hour less time. Find his

time and rate. (See Ex. 10, p. 9.)

14. Show that the formulas for the length I and the width w of the

rectangle whose perimeter is a and whose area is h are

l=\{a+^/a^-mh), a' = i((i-Vo2-166).

15. If the difference of the areas of two circles be d and the sum ot

their circumferences be s, show that their radii r^ and rj, must have

the following values:

47r(i4-s* s^—i'Trd



CHAPTER V

THE PROGRESSIONS

I. Arithmetic Progression

33. Definitions. An arithmetic progression is a sequence

of numbers, called terms, each of which is derived from the

preceding by adding to it a fixed amount, called the common
difference. An arithmetic progression is commonly denoted

by the abbreviation A. P.

Thus 1, 3, 5, 7, ••• is an A. P., since each term is derived from the

preceding by adding 2 to it. Hence 2 is the common diiierence. The
dots following the 7 indicate that the series may be extended as far as

one pleases. Thus the first term after 7 would be 7+2, or 9; the next

would be 9+2, or 11; etc.

Again, 5, 1, —3, —7, —11, ••• is an A. P. Here the common differ-

ence is —4.

EXERCISES

Determine which of the following progressions are arithmetic pro-

gressions, and for such as are, determine the common difference.

1. 3, 6, 9, 12, -. 6. 0, 2a, 4a, 6a, -.

2. 3, 5, 6, 8, —

.

7. o, a+4, a+8, a+12, ••.

3. 6, 3, 0, -3, —

.

8. a, a+d, a+2d, a+3d,---.

4. 30, 25, 20, 15, -. 9. x-iy, x-2y, x-y, •••.

5. -1, 2, 5, 8, —

.

10. Zx+Zy, &x+2y, 9x+i/. ••.

11. Write the first five terms of the A. P. in which

(a) The first term is 4 and the conamon difference is 2.

(5) The first term is 3a and the common difference is —6.

34. The Formula for the nth Term. From the definition

(§ 33) it follows that every arithmetic progression is of the
typical form

a, a-\-d, a+-2d, a+3d,

Here the first term is a and the common difference is d.

70
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Observe that the coefficient of d in any given term is 1 less

than the number of that term. Thus, in the third term the

coefficient of d is 3— 1, or 2; hkewise in the fourth term the

coefficient of d is 4—1, or 3. Thus, in general, the coefficient

of d in the nth term is (n— 1). Hence, if we let I stand for

the entire nth term, we have the formula

Z=a+(n-l)c?.

Example. Find the 11th term of the A. P. 1, 3, 5, 7, •••.

Solution. Here o = l, d = 2, n = ll, 1 = 1 Hence, substituting in

the formula, we find ? =o+(n-l)d = l+10X2 = l+20 = 21. Am.
This result may be checked by actually writing out the series so as

to include the 11th term.

35. The Formula for the Sum of the First n Terms. Let

a represent the first term of an A. P., d the common difference

and I the nth term, as in § 34. Then the sum of the first n

terms, which we will denote by S, is

(1) S= a+{a+d)+ (a+2d)+ ia+M)-\ \-(l-d)+l.

This value for S may be much simplffied, however, as we

shall now show.

Write the A. P. (1) in its reverse order, thus obtaining

(2) S= l+{l-d)+ il-2d)+ il-3d)+ • +{a+d)+a.

Now add (1) and (2), noting the cancellation of d with —d,

of 2d with — 2d, etc. The result is

2S= ia+l)+ ia+l)+ (a+l)+'- +ia+l)+ (.a+T),

or

2S= n(a+l).

Therefore

S=|(a+Z).

If we replace I by its value a+ (n—l)d (§ 34), this formula

takes the form

S=|-{2a + (n-l)d}.
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Example. Find the sum of the first 12 terms of the A. P. 2, 6,

10, 14, -.

Solution. Here a = 2, d = 4, m = 12, s = ?

Substituting in the second of the formulas just obtained, we find

S =—|4+ 11X41 =6|4+44| =6X48 = 288. Am.

36. Arithmetic Means. The terms of an arithmetic pro-

gression that lie between any two given terms are called the

arithmetic means between those terms.

Thus the three arithmetic means between 1 and 9 are 3, 5, 7, since

1, 3, 5, 7, 9 form an A. P.

Whenever a single term is thus inserted between two

numbers, it is briefly called the arithmetic mean of those

two numbers.

Thus the arithmetic mean of 2 and 10 is 6 because 2, 6, 10 form

an A. P.

A formula for the arithmetic mean between any two num-

bers a and b is easily obtained. Thus, if x is the desired mean,

then a, x, b must form an A. P. Hence, if d be the common
difference, we must have x— a = d and b—x= d. It foUows

that we must have x—a = b— x. This equation, when solved

for X, gives as the desired formula

a+b

Thus, it follows that the arithmetic mean of two numbers is

equal to half their sum.

Note. The arithmetic mean of two numbers is also called their

average.

Example. Insert five arithmetic means between 3 and 33.

Solution. We are to have an A. P. of 7 terms in which o = 3, Z = 33,

andn = 7. We begin by finding d. Thus

l =a+{n-l)d (§ 34) so that 33 = 3+6d. Solving, d = 5.

The progression is therefore 3, 8, 13, 18, 23, 28, 33, and hence the

desired means are 8, 13, 18, 23, 28. Ans.
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EXERCISES

Find, by the fonnulas of §§ 34, 35, the numbers called for in Exer-

cises 1-6 below.

1. The 12th term of 3, 6, 9, 12, ••.

2. The 21st term of 4, 2, 0, -2, -4, ••.

3. The nth term of x-y, 2x-2y, Zx-^y, .
4. The sxmi of the first ten terms of 3, 6, 9, 12, •••.

6. The sum of the first thirteen terms of 1, SJ, 6, ••.

6. The sum of the A. P. of eleven terms, the first of which is —5
and the last of which is 20.

7. When a small heavy body (as a bullet) drops vertically downward

it passes over 16.1 feet during the first second, three times as far during

the second second, five times as far during the third second, etc.

Hence answer the following questions.

(a) How far does it go during the 12th second?

(6) How far does it go during the first twelve seconds?

8. If you save 5 cents during the first week in January, 10 cents the

second week, 15 cents the third week and so on, how much will you

save during the last week of the year. Also, what will be the total of

the year's savings?

9. Find the sum of all odd integers less than 100.

10. The first term of an A. P. is \ and the 12th term is 11^. What is

the sum of the 12 terms?

11. In Fig. 24 the sixteen dotted Hues are

equally spaced, and hence their lengths form an

arithmetic progression. If the highest one is 6

inches long and the lowest one is 3 feet long,

what is the sum of all their lengths? Fig. 24

12. The rungs of a ladder diminish uniformly from 2 feet 4 inches

in length at the base to 1 foot, 3 inches at the top. If there are 24

rungs altogether, what is the total length of wood
they contain?

13. A piece of rope, when coiled in the usual

manner shown in Fig. 25, is found to have 12 com-

plete turns, or layers. If the innermost turn is 4

inches long and the outermost is 37 inches long, es-

timate the total length of the rope. Fia. 25
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14. Fifty-five logs are to be piled so that the top layer shall contain

1 log, the next layer 2 logs, the next layer 3 logs, etc. How many logs

will lie on the bottom layer?

15. A row of numbers in arithmetic progression is written down

and afterwards all erased except the 7th and the 12th, which are fomid

to be —10 and 15 respectively. What was the 20th niimber?

16. A small rope is wound tightly round a cone, as

shown in Fig. 26, the number of complete turns being

24. Upon unwinding from the top, the first and second

turns are found to measure respectively 2\ inches and

3^ inches. Estimate the length of the rope.

17. Prove that equal multiples of the terms of an

arithmetic progression form another arithmetic progres-

sion.

18. Prove that the sum of n consecutive odd inte-
,

gers, beginning with 1, is n^.

19. Show that the first formula for S obtained in § 35

may be translated into words as follows: "The sum of n terms of an

arithmetic progression is equal to n multiplied by the arithmetic mean
of the first and the last terms."

20. In the figure below is shown the fnistum of a cone with its "mid-

section," or section midway between the bases. Similarly, the frustum

of a pyramid and its "mid-

section" are shown. It is

proved in solid geometry

that in all such cases the

perimeter of the mid-section

is the arithmetic mean of

the perimeter of the two

bases. Hence, answer the following questions:

(a) If the perimeters of the bases are 30 inches and 10 inches

respectively, what will be the perimeter of the mid-section?

(6) If the radius of the upper base is 2 inches and that of the lower

base 8 inches, what will be the perimeter of the mid-section?

21. If d = 2, n = 21 and 5 = 147, find o and I.

22. Show that if any three of the quantities a, d, I, n, S are given,

it is always possible to find the other two. In particular, prove that

the value of a in terms of d, I and S is given by the formula
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II. Geometric Progression

37. Definitions. A geometric progression is a sequence

of numbers, called terms, each of which is derived from the

preceding by multiplying it by a fixed amount, called the

common ratio. A geometric progression is commonly denoted

by the abbreviation G. P.

Titus 2, 4, 8, 16, 32, • is a G. P., since each term is derived from

the preceding by multiplying it by 2, which is therefore the common
ratio.

Likewise, 10, —5, 5/2, —5/4, •• is a G. P. whose common ratio is

-1/2. The next two terms would be 5/8, -5/16.

EXERCISES

Determine which of the following are geometric progressions, and

for such as are, determine the common
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Therefore the exponent of r in the nth term must be (n— 1),

so that if we let I stand for the nth term we have the formula

Example. Find the 7th term of the G. P. 6, 4, f,
•••.

SoLTJTioN. We have a = 6, r = |^, n = 7, 1 = 1

The formula gives I = ar'^-^ =Qx(A =2X3 X-IJIJ^. An..
a* 3^ 243

39. The Formula for the Sum of the First n Terms. Let

a be the first term of a geometric progression, r the common
ratio and I the nth term. Then the sum of the first n terms,

which we will caU S, is

(1) S= a-\-ar+ar'+a7^^ . . . +af^+ar'^K

This value for S may, however, be written in a very much
more condensed form, as we shall now show. Multiply both

members of (1) by r, thus obtaining

(2) rS= ar+ar^+ar^+ar*+ . . .ar'^-^+ar''.

Now subtract equation (2) from equation (1), noting the

cancellation of terms. This gives S—rS=a—ar". Solving

this equation for S, we find

(3) S=°-^".
1—

r

This is the condensed form for S mentioned above.

It is to be observed also that since Z=ar''~i (§ 38), we may
write rl= ar^. Placing this value of ar" into the formula just

found for S, we obtain as a second expression for S

1— r

Example. Find the sum of the first six terms of the G. P. 3 6,

12, 24, -.

Solution. a = 3, r = 2, n = 6, iS = ?

„ a-ar" 3-3-2" 3-3-64 3-192 -189
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40. Geometric Means. The terms of a geometric pro-

gression that he between any two given terms are called the

geometric means between those two terms.

Thiis, if we wish to insert three geometric means between 2 and 32,

they would be 4, 8, 16, since 2, 4, 8, 16, 32 forms a G. P.

Whenever a single term is inserted in this way between

two numbers, it is briefly called the geometric mean of

those two numbers.

Thus the geometric mean of 2 and 32 is 8, since 2, 8, 32 forms a G. P.

A formula for the geometric mean of any two numbers,

as a and b, is easily obtained. Thus, if x denote the mean,

then a, x, b forms a G. P. so that x/a = b/x, each of these

fractions being equal to the common ratio of the G. P.

Clearing this equation of fractions, and solving for x we find

x=\/ab.

Thus it follows that the geometric mean of two numbers is

equal to the square root of their 'product.

Example. Insert four geometric means between 3 and 96.

SoLTTTiON. We are to have a G. P. in which a = Z, Z = 96 and w = 6.

We begin by finding r. Thus

l=ar'^~^ (§ 38), so that 96 = 3 -r*, or r* = 32. Hence r = 2.

The progression is therefore 3, 6, 12, 24, 48, 96, and hence the

four desired means are 6, 12, 24, 48. Atis.

Historical Note. It is related that when Sessa, the inventor of

chess, presented his game to Scheran, an Indian prince, the latter

asked him to name his reward. Sessa begged that the prince would

give him 1 grain of wheat for the first square of the chess board, 2 for

the second, 4 for the third, 8 for the fourth, and so on to the sixty-

fourth. The number of grains of wheat thus called for was (see (3), § 39)

1 _i .9^ 2^— 1= =2^-1 = 18,446,744,073,709,551,615.
1-2 1

This amount is greater than the world's annual supply at present.

History does not relate how the claim was settled. (From Godfrey and

Siddons' Elementary Algebra, Vol. II, pp. 336, 337.)
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EXERCISES

Find, by the formulas of §§ 38, 39, the following numbers.

1. The ninth term of 2, 4, 8, 16, •••.

2. The eighth term of ^i ^i 1, •.

3. The tenth term of 4, 2, 1, -|^, •.

4. The eleventh term of ax, aV, oV, a*x*, ••.

5. The tenth term of 2, \/2, 1, ••-.

6. The sum of eight terms of 2, 4, 8, •••.

7. The sum of six terms of 1, 6, 25, ••.

8. The sum of ten terms of —|-i -|-j —^i •.

9. The sum of ten terms of 1, a^, a^, ••.

10. What is the sum of the series 3, 6, 12, •••, 384?

11. What is the sum of the series 8, 4, 2, •••, -^^t

12. Find the sum of the first ten powers of 2.

13. Find the sum of the first seven powers of 3.

14. For every person there has lived two parents, four grandparents,

eight great grandparents, etc. How many ancestors does a person have

belonging to the 7th generation before himself (assuming no dupli-

cation)? Answer also for the 10th generation.

16. From a grain of corn there grew a stalk which produced an ear

of 100 grains. These grains were planted and each produced an ear of

100 grains. This was repeated until there were 5 harvests. If 75 ears

make a bushel, how many bushels were there the fifth year?

16. A series of five squares is drawn such that a side of the second

is twice as long as a side of the first, a side of the third twice as long as

a side of the second, etc. If a side of the first is 2 inches long, find

(by § 39) the sum of the areas of all the' squares.

17. Half the air in a certain sealed receptacle is removed by each

stroke of an air pump. What fraction of the original amount of air

has been removed by the end of the 7th stroke?

18. A wheel is making 32 revolutions per second when the steam

is turned off and the wheel begins to slow down, making half as many
revolutions each second as it did during the preceding second. How
long before it will be making only 2 revolutions per second?

19. It is found that the number of bacteria in milk doubles every

3 hours. By how much will it be multiplied by the end of one day?
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Fig. 28

20. Show that if a principal of $p be invested at r% compound
interest, the sum of money accumulating at the ends of successive

years will form a geometric progression, but if the investment be made
at simple interest, the sums similarly accumulating will form an arith-

metic progression.

21. From a cask of vinegar ^ the contents is drawn off and the cask

then filled by pouring in water. Show that if this is done 6 times, the

cask will then contain more than 90% water.

[Hint. Call the original amount of vinegar 1, then express (as a

proper fraction) the amount of water in the cask after the first refiUing,

second refilling, etc.]

22. In Fig. 28 a series of ordinates equally

spaced from each other has been drawn, the

first one being laid off 1 unit long, the second

one being laid off equal to the first one increased

by ^ its length, etc. Show that these ordinates

represent the successive terms of the G. P.

whose first term is 1 and whose common ratio is

l\. In this sense, the figure may be called the

diagram corresponding to the G. P. in which a = l, r = l^.

23. Draw the diagram for the G. P. in which

(a) a = l,r = li, (b) a = 2, r = l|, (c) a = 4, j- = |.

24. Prove that the reciprocals of the terms of a geometric progression

form another such progression.

25. If a series of numbers are in geometric progression, are their

squares likewise in geometric progression? Answer the same question

for the cubes of the given numbers; also for their square roots and

their cube roots.

Answer the same questions for an arithmetic progression.

[Hint. See that your reasoning is general; that is, do not base it

merely upon the examination of special cases.]

26. Find, correct to four decimal places, the

geometric mean of 6 and 27. (Use the tables.)

27. In Fig. 29 a square is placed (in any

manner) within another square whose side is twice

as long. Show that the area between the squares

is equal to three halves of the geometric mean of

the areas of the two squares, Pig. 29
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41. Infinite Geometric Progression. Consider the geo-

metric progression

(1) 1, h h h ^' -
Here a=l, r= ^, and hence, by § 39, the sum of n terms is

a-ar'' 1-1 • (if l-iiT
S= -

^-r 1-i i

Now, if the value selected for n is very large, the expres-

sion (1/2)" which here appears is very small, being the frac-

tion I multiplied into itself n times. In fact, as n is selected

larger and larger, this expression (1/2)"' comes to be as small

as we please, so that the value for *S, as given above, comes as

near as we please to

1-0—1—

'

2

which is the same as 2. So we say that 2 is the sum to in-

finity of the geometric progression above, meaning thereby

simply that as we sum up the terms, taking more and more
of them, we come and remain as near as we please to 2.

The meaning gf this result is illustrated in Fig. 30.

i \

—^^
Fig. 30

Here, beginning at the point marked 0, we first measure
off 1 unit of length, then, continuing to the right, we measure
off § unit, then J unit, then | unit, etc., each time going to

the right just one-half the amount we went the time before.

As this is kept up indefinitely, we evidently come as near as

we please to the point marked 2, which is 2 units from 0.

This corresponds exactly to what we are doing when we add
more and more of the terms of the given progression

^' h h h TS'
'" '

A progression Hke the one just considered, in which the
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value of n is not stated but may be taken as large as one

pleases, is called an infinite geometric progression.

Having thus considered the sum to infinity of the special

infinite geometric progression (1), let us now suppose that we
have any infinite geometric progression, as

a, ar, ar^, ar^, •••,

and (as before) that r has some value numerically less than

1. Then the sum of the first n terms is, by § 39

and, as n is taken larger and larger, the expression r" which

appears here becomes as small as we please, since we have

supposed r to be less than 1. Hence, as n increases indefi-

nitely, the value of S comes as near as we please to

a— a

1-r
or

1-r

We have therefore the following theorem: The sum to

infinity of any geometric progression whose common ratio r

is numerically less than 1 is given by the formula

1—

r

Example. Find the sum to infinity of the progression

3, 1, ^, -1, .jL, •••.

Solution. o = 3, r = |. Since r is numerically less than 1, we have

by the formula of § 41,

S =-^ =A = |=?=4i. Ans.
1-r 1-i I 2 ^
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EXERCISES

Find the sum to infinity of each of the following progressions, and

state in each case what your answer means, drawing a diagram similar

to Fig. 30 to illustrate.

1. 1, |, |, ^, ... . 2. ^,|, |, ....

3. 1, _J, 1, _^, ... .

[Hint. r= —J- and hence is numerically less than 1. The formula

of § 41 therefore applies.]

4. 4, .4, .04, .004, ••.

6- i, -1*8. ¥\) •• •

6. 1—x+rc^—x'+ •• when a;=f-.

8. ?, _2V^ 4

sVs' 9

7. x^, 1,-L, 1,

\/3 3
9.1,

6 5V3 15

10. A pendulum starts at A and swings to B,

then it swings back as far as C, then forward as

far as D, etc If the first swing (that is, the cir-

cular arc from A to B) is 6 inches long and each

succeeding swing is five-sixths as long as the one

just preceding it, how far will the pendulum bob

travel before coming to rest?

11. At what time after 3 o'clock do the hands

of a watch pass each other?

[Hint. We may look at this as follows: The
large (minute) hand first moves down to where

the small (hour) hand is at the beginning, that is, through 15 of the

minute spaces along the dial. Meanwhile the small hand advances ^
as far, or -j-f of a minute space. This brings the small hand to the

position indicated by the dotted line in the figure.

The large hand next passes over this -J-f of a

minute space. Meanwhile the small hand again

advances -^ as far, which is -j^ of a minute

space. The large hand next covers this ^'^^ of a

minute space, but the small hand meanwhile ad-

vances T^ as far, or i\^-g of a minute space, etc.

Thus, the successive moves of the large hand. Fig- 32

counting from the first one, form the G. P. 15, 14, J5 -I4.5., ... .1
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42. Variable. Limit. We have seen (§ 41) in connection

with the geometric progression 1, i, i, i, ••, that the sum of

its first n terms is a quantity which, as n increases indefinitely,

comes and remains as near as we please to the exact value 2.

The usual way of stating this is to say that as n increases,

the sum of the first n terms approaches 2 as a limit. The sum
of the first n terms is here called a variable since it varies, or

changes, in the discussion. A similar remark apphes to all

the infinite geometric progressions which we have consid-

ered. In every case the sum to infinity is the hmit which
the sum of the first n terms, considered as a variable quantity,

is approaching.

Note. It may be asked whether the sum of the first n terms of the

G. P. 1, -J, \, ^, could ever actually reach its limit 2. The answer is

that it may or it may not, depending upon circumstances. Thus, if

we think of the terms, beginning with the second, as being added on

at the rate of one a minute we could never reach the end of the adding

process, since the number of the terms is inexhaustible and hence the

minutes required would have no end. In other words, the sum of the

first n terms could never reach its hmit on this plan. But suppose that

instead of this we were to add on the terms with increasing speed as

we went forward. For example, suppose we added on the -|^ in ^ a

minute, then the -^ in :^ of a minute, then the ^ in ^ of a minute, etc.

On this plan we would actually reach the limit 2 in 2 minutes of time.

Here the constantly increasing speed of the adding process exactly

counterbalances the fact that we have an indefinitely large number of

terms to add, with the result that we reach the end of the process in

the definite time of 2 minutes. This idea is practically illustrated in

Ex. 11, p. 82, where the hands of the watch would never pass each

other at all except for the fact that the successive moves of the large

hand, which constitute the terms of the progression 15, |-|' i*A' T"7 fr'
' '

'

are added on in less and less time as the process goes on, each being

added on in -^-^ the time occupied by the one just before it.

The question of whether a variable can reach its limit is intimately

connected with the famous problem considered by the Schoolmen of

antiquity and known as the problem of Achilles and the tortoise. In

this problem, Achilles, who is a celebrated runner and athlete, starts

out from some point, as A, to overtake a tortoise which is at some point,

as T, the tortoise being famous for the slow rate at which it crawls
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along. Both start at the same instant and go in the same direction,

as indicated in the figure. Achilles soon arrives at the point T, from

which the tortoise started, but in the meantime the tortoise has gone

Fig. 33

some distance ahead. Achilles now covers this last distance, but this

leaves the tortoise still ahead, having again gained some additional

distance. This continues indefinitely. How, therefore, can Achilles

ever overtake the tortoise? The Schoolmen never quite answered this

question satisfactorily to themselves. The secret of the diflBculty lies

in the fact that, as in the other problems mentioned above, the successive

moves which Achilles makes are done in shorter and shorter intervals

of time, with the result that, although the number of moves necessary

is indefinitely great, they can aU be accomplished in a definite time.

43. Repeating Decimals. If we express the fraction ^|
decimally by dividing 12 by 33 in the usual way, we find that

the quotient is .363636 • • •
, the dots indicating that the divi-

sion process never stops (or is never exact) but leads to a

never-ending decimal. However, the digits appearing in

this decimal are seen to repeat themselves in a regular order,

since they are made up of 36 repeated again and again.

Such a decimal is called a repeating decimal. More generally,

a repeating decimal is one in which the figures repeat them-

selves after a certain point. Thus,

.12343434 • •
, and 1.653653653 • •,

are repeating decimals.

Let us now turn the question around. Thus, suppose

that a certain repeating decimal is given, as for example

.272727 • • -, and let us ask what fraction when divided out

gives this decimal. This kind of question is usually too

difficult to answer in arithmetic, but it can be easily answered

as follows by use of the formula in § 41.

Thus the decimal .272727 • may be written in the form
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This is an infinite geometric progression in which a = -^,
^— jiTS- The sum of this progression to infinity must be the

value of the given decimal. Hence, the desired value is

1-

iVir ^27 100_27_ 3

l-ris 100^99 99 11
Ans.

This answer may be checked by dividing 3 by 11, the

result being .272727 • • •, which is the given decimal.

Note. It is shown in higher mathematics that every rational frac-

tion in its lowest terms (that is, every number of the form a/b, where

o and b are integers prime to each other) gives rise when divided out

to a never-ending repealing decimal (including the cases ia which all

the digits after a certain point are zero), while every irrational number
(such as -\/2) gives rise when expressed decimally to a never-ending

non-repeating decimal.

EXERCISES

Find the values of the following repeating decimals and check your

answer for each of the first six.

1. 0.153153 —

.

4. 0.3414141 —

.

Solution. 0.3414141

2. 0.135135 3. 0.543543543

5. 0.17272 —
6. 1.212121 ••

7. 3.2151515

•=.3
-I- .0414141 •••

=-^+i^(i3;^)

_.i 1 41 100
~
10 10^100^ 99

3 41 338 169

~10 990~990~495'
Ans.

8. 5.032032032

9. 6.008008008

10. 34.5767676 ••



CHAPTER VI

VARIATION

44. Direct Variation. One quantity is said to vary

directly as another when the two are so related that, though

the quantities themselves may change, their ratio never

changes.

Thus the amount of work a man does varies directly as the number

of hours he works. For example, if it takes him 4 hours to draw 10

loads of sand, we can say it will take him 8 hours to draw 20 loads.

Here the first ratio is x% and the second is -^ and the two are equal,

though the numbers in the second have been changed from what they

were in the first. In general, if the man works twice as long, he will

draw twice as much ; if he works three times as long, he will draw three

times as much, etc.; all of which implies that the ratio of the time he

works to the amount he draws in that time never changes.

EXERCISES

Determine which of the following statements are true and which

are false, giving your reason in each instance.

1. The amount of electricity used in lighting a room varies directly

as the number of lights turned on.

2. The amount of water in a cyUndrical pail varies directly as the

height to which the water stands in the pail.

3. The amount of gasoline used by an automobile in any given time

(one week, say) varies directly as the amount of driving done.

4. The time it takes to walk from one place to another at any given

rate (3 miles an hour, say) varies directly as the distance between the

two places.

5. The time it takes to walk any given distance (5 miles, say) varies

directly as the rate of walking.

6. The perimeter of a square varies directly as the length of one side.

7. The circumference of a circle varies directly as the length of the

radius.

8. The area of a square varies directly as the length of one side.

9. X varies directly as Wx.

10. X varies directly as lOx^.

86
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45. Inverse Variation. One quantity, or number, is said

to vary inversely as another when the two are so related

that, though the quantities themselves may change, their

product never changes.

Thus the time occupied in doing any given piece of work varies

inversely as the number of men employed to do it. For example, if it

takes 2 men 6 days, it will take 4 men only 3 days. The point to be

observed here is that the first product, 2X6, equals the second product,

4X3. In general, if twice as many men are employed it will take half

as long; if three times as many men are employed, it will take one-third

as long, etc. In all these cases, the number of men employed multiplied

by the corresponding time required to do the work remains the same.

Note. The term varies inversely as is due to the fact that in case xy

never changes (as required by the above definition), it follows that

x-r-(l/y) never changes, since xy = x-i-(,l/y). That is, x varies directly

as the reciprocal, or inverse, of 2/ (§ 44).

EXERCISES

Determine which of the following statements are true and which

are false, giving your reason in each instance.

1. The time it takes water to drain off a roof varies inversely

as the number of (equal sized) conductor pipes.

2. The time it takes to walk any given distance (5 miles, say) varies

inversely as the rate of walking.

3. The weight of a pail of water varies inversely as the amount of

water that has been poured out of it.

4. X varies inversely as 10/x.

5. X varies inversely as 10/a^.

46. Joint Variation. One quantity, or number, is said to

vary jointly as two others when it varies directly as their

product.

Thus the area of a triangle varies jointly as its base and altitude,

for if A be the area of any triangle and b its base and h its altitude, we
have A =\bh, which may be written A/bh =^. Hence A varies directly

as the product bh (§ 44); that is, the ratio of A to bh is always the same,

namely -j in this instance.
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EXERCISES

Determine whether the following statements are true, giving your

reason in each instance.

1. The area of a rectangle varies jointly as its two dimensions; that

is, as its length and breadth.

2. The pay received by a workman varies jointly as his daily wage

and the number of days he works.

3. The amount of reading matter in a book varies jointly as the

thickness of the book and the distance between the lines of print on

the page.

4. The interest received in one year from an investment varies

jointly as the principal and rate.

5. The volume of a rectangular parallelepiped (such as an ordinary

rectangular shaped box) varies jointly as its length, breadth, and height.

[Hint. Here we have one quantity varying jointly as three others.

First make a definition of what such variation means.]

47. Variables and Constants. When we say that the

amount of vpork a man does varies directly as the number of

hours he works, we are dealing with two quantities, namely

the amount of work done and the time used in doing it. But

it is to be observed that these are not being regarded as

fixed quantities, but rather as changeable ones, the only

essential idea being that their ratio never changes. In gen-

eral, quantities which are thus changeable throughout any

discussion or problem are called variables, whUe quantities

which do not change are called constants. (Compare § 42.)

48. The Different Types of Variation Stated as Equa-

tions. We may now state very briefly and concisely what is

meant by the different types of variation described in

§§ 44r-46 and certain other important types also. To do

this, let us think of x, y, and z as being certain variables

and k as being some constant. Then we may state the fol-

lowing facts

:
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I that X varies directly as y means (§

-= k, or X = ky, where k is a constant.

(1) To say that x varies directly as y means (§ 44) that

X
y'

(2) To say that x varies inversely as y means (§ 45) that

xy= k, or a;= -, where kis a constant.

(3) To say that x varies jointly as y and z means (§ 46) that

— =k, or a; = kyz, where k is a constant,
yz

Two other important types of variation are described

below:

(4) To say that x varies directly as the square of y means that

X
-j= fc, or x= ky^, where k is a constant.

(5) To say that x varies inversely as the square of y means that

k
xy^ = k, or 0;= -;' where k is a constant.

In all these types of variation it is important to observe

that the value which must be given to the constant k depends

upon the particular statement or problem in hand. For

example, consider the statement that "The area of a rec-

tangle varies jointly as its two dimensions." This means

(see [3]) that if we let A be the variable area and a and h

the variable dimensions, then A = kab. But in this case we
know by arithmetic that A = ah, so the value of k here must

bel.

On the other hand, consider the statement that "The

area of a triangle varies jointly as its base and altitude."

Letting A be the variable area and h and h the variable base

and altitude, respectively, this means that A = kbh. But

here, as we know from geometry, k = ^.
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EXERCISES

Convert each of the following statements into equations, supplying

for each the proper value for the constant k mentioned in § 48.

1. The circumference of a circle varies directly as the radius.

[Hint. Let C stand for circumference and r for radius.]

2. The circumference of a circle varies directly as the diameter.

3. The area of a circle varies directly as the square of the radius.

4. The area of a circle varies directly as the square of the diameter.

5. The area of a sphere varies directly as the square of the radius.

6. The volume of a rectangular parallelopiped varies jointly as its

length, breadth, and height.

7. Interest varies jointly as the principal, rate, and time.

8. The volume of a sphere varies directly as the cube of the radius.

[Hint. First supply for yourself the definition of what this type of

variation means.]

9. The volume of a circular cone varies jointly as the altitude and
the square of the radius of the base. (See formula (11), § 7).

10. The distance, measured in feet, through which a body falls if

dropped vertically downward from a position of rest (as from a window
ledge) varies directly as the square of the number of seconds it has

been falling.

[Hint. It is found by experiments in physics that the value of the

constant k is in this case 32 (approximately).]

11. The following, Uke Ex. 10, are statements of well-known phys-

ical laws. Convert each into an equation without, however, attempting

to supply the proper value of k, since to do so requires a study of physics

and experiments in laboratories.

Fig. 34

(a) When an elastic string is stretched out, as represented in Fig. 34,

the tension (force tending to pull it apart at any point) varies directly

as the length to which the string has been stretched. (This fact is

known as liooke's Law).
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(6) If a body is tied to a string and swung round and round in a
circle (as in swinging a paU of water at arm's length from the shoulder),

the force, F, with which it pulls outward from the center (called cen-

trifugal force) varies directly as the square of the velocity of the motion.

(c) The intensity of the illumination due to any small source of

light (such as a candle) varies inversely as the square of the distance of

the object Uluminated from the source of hght.

(d) The pressure per square inch which a given amount of gas (such

as air, or hydrogen, or oxygen, or illuminating gas) exerts upon the

sides of the containing receptacle (such as a bag) varies inversely as

the volume of the receptacle {Boyle's Law).

For example, whenever air is confined in a rubber balloon, as in

the first drawing in Fig. 35, it exerts a certain pressure upon each square

Fig. 35

inch of the interior surface. If the balloon be squeezed, as in the second

drawing (no air being allowed to escape), until its volume is half of

what it was before, this pressure wiU be exactly doubled.

(e) The square of the mean distance of any planet in the solar

system from the sun varies directly as the cube of the time it takes the

planet to make one complete revolution around the sun (Kepler's third

law of planetary motion).

In the case of the earth, its mean distance from the sun is about

93,000,000 miles and its time of complete revolution is 1 year, or

365^ days.

49. Problems in Variation. The problems naturally-

arising in the study of variation fall into two general classes

as follows

:

(1) Those in which the value of the constant k mentioned

in § 48 can be determined from the statement of the problem



92 COLLEGE ALGEBRA [VI, § 49

and forms an essential part in the solution. This kind of

problem is illustrated by Exs. 1-10 below. The solution

given for Ex. 1 should be well understood before the student

undertakes Exs. 2-10.

(2) Those in which it is not necessary to know the value of

k. Such problems are illustrated in Exs. 11-20 below.

The pupil is advised to work several problems from each

group rather than to confine his attention to either.

EXERCISES

I. Illustrations op Case (1)

1. In a fleet of ships all made from the same model (that is, of the

same shape, but of different sizes) the area of the deck varies directly

as the square of the length of the ship. If the ship whose length is

200 feet has 5000 square feet of deck, how many square feet in the deck

of the ship which is 300 feet long?

Solution. Let A represent the area of deck on the ship whose
length is I. Then the given law of variation, expressed as an equation

(§ 48), is

(1) A=hl?. (fc = some constant)

Since the ship which is 200 feet long has 5000 square feet of deck,

it follows from (1) that we must have

5000 = A; (200)2.

This equation tells us that the value of k in the present problem

must be

5000 _ 5000 _ 1

~
(200)2

~
200X200 "8

Placing this value of k in (1), gives us an equation which deter-

mines completely the relation between A and I in the present problem;

that is,

(2) A=iP.
Now the problem asks how many square feet of deck there are in

the ship whose length is 300 feet. This can be found by simply placing

1 = 300 in (2) and solving for A. Thus

1 300 X 300
A =

IX (300)2^ = 1 1 ,250 square feet. Am.
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Note. Observe that the first step in the above solution is to express

as an equation the law of variation belonging to the problem. Next,
the constant k is determined. After this, the first equation is rewritten

in its more exact form obtained by assigning to k its value. The answer
is then readily obtained.

These steps should be followed in working each of the Exs. 2-10

which follow.

2. In a fleet of ships all of the same model, the ship whose length

is 200 feet contains 6000 square feet in its deck. How long must a
similar ship be made if its deck is to contain 13,500 square feet?

3. To make a suit of clothes for a man who is 6 feet 8 inches high

requires 6 square yards of cloth. How much cloth will be required to

make a suit for a man of similar build, whose height is 6 feet 2 inches?

[Hint. The areas of any two similar figures vary directly as the

squares of their heights.]

4. If 10 men can do a piece of work in 20 days, how long will it take

26 men to do it?

[Hint. The time required varies inversely as the number of men
employed.]

5. The horse-power required to propel a ship varies directly as the

cube of the speed. If the horse-power is 2000 at a speed of 10 knots,

what will it be at a speed of 15 knots?

6. A silver loving-cup (such as is sometimes given as a prize in

athletic contests) is to be made, and a model is first prepared out of

wood. The model is 8 inches high and weighs 12 ounces. What will

the loving-cup cost if made 10 inches high, it being given that silver

is 17 times as heavy as wood and costs $2.20 an ounce?

[Hint. The volumes and hence the weights of any two similar

figures of like material vary directly as the cubes of their heights.]

7. When electricity flows through a wire, the wire offers a certain

resistance to its passage. The imit of this resistance is called the ohm,

and for a given length of wire the resistance varies inversely as the

square of the diameter. If a certain length of wire whose diameter is

\ inch offers a resistance of 3 ohms, what wiU be the resistance of a

similar wire (same length and material) ^ of an inch in diameter?

8. Three spheres of lead whose radii are 6 inches, 8 inches, and 10

inches respectively are melted and made into one. What is the radius

of the resulting sphere?
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9. On board a ship at sea the distance of the horizon varies directly

as the square root of one's height above the water. If, at a height of

20 feet, the horizon is 5.5 nules distant, what is its distance as seen

from a hghthouse 80 feet above sea-level?

10. The horse-power that a shaft can safely transmit varies jointly

as its speed in revolutions per minute and the cube of its diameter. A
3-inoh steel shaft making 100 revolutions per minute can transmit 85

horse-power. How many horse-power can a 4-inch shaft transmit at a

speed of 150 revolutions per minute?

II. Illusteations of Case (2)

11. Knowing that the force of gravitation due to the earth varies

inversely as the square of the distance from the earth's center {Newton's

Law of Gravitation), find how far above the earth's surface a body

must be taken in order to lose half its weight.

Solution. Letting W represent the weight of a given body at the

distance d from the earth's center, the law stated above, when expressed

as an equation, becomes

k
(1) W = -^- (fc=some constant)

a

Now let Wi represent the weight of the body when on the surface.

Remembering that the earth's radius is 4000 miles (approximately),

equation (1) gives

Next, let X represent the desired distance, namely the distance

above the surface at which the same body loses half its weight. At
this distance its weight will consequently be ^Wi, while its distance

from the earth's center is now 4000-|-x. So (1) gives

^
'

2 (4000 +x)2

Dividing equation (3) by equation (2), noting the cancelation of

Wi on the left and of the (unknown) k on the right, we obtain

1_ 4000^

2~(4000+x)2'

It remains only to solve this equation for x.

Clearing of fractions, (4000-|-a;)2 = 2 4000^=4000^ • 2.

Extracting the square root of both members, 4000 -f-a; = 4000 -\/2-
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Solving, a; = 4000-s/2-4000 = 4000(V2-l) miles. Ans.

To find the approximate value of this answer, we have ,(see tables)

V2 = 1.41421

60 that a; = 4000(1.41421-l) =4000X.41421 = 1656.84 miles. Ans.

12. Show that the earth's attraction at a point on the surface is

over 5000 times as strong as the distance of the moon; that is, at the

(approximate) distance of 280,000 miles.

[Hint. Call Wi the weight of a given body on the surface, and let

Wi represent the weight of the same body at the distance of the moon
from the earth's center. Then use the law expressed in (1) of the

solution of Ex. 11.]

13. A book is being held at a distance of 2 feet from an incandescent

lamp. How much nearer must it be brought in order that the illumi-

nation on the page shall be doubled? (See Ex. 11 (6), p. 91.)

14. If two like coins (such as quarter dollars) were melted and made
into a single coin of the same thickness as the original, show that its

diameter would be -v/2 times as great.

[Hint. Call D the diameter of the given coins and A the area of

each. Note that the area of the new coin will then be 2A. Use the

result stated in Hint to Ex. 3, p. 93.]

15. Find the result in Ex. 14 when four equal-sized coins are used.

16. Show that a faUing body will pass over the second 3 feet of its

descent in about .4 of the time it takes it to pass over the first 3 feet.

(See Ex. 10, p. 90.)

17. The time required for a pendulum to make a complete oscillation

(swing forward and back) varies directly as the square root of its length.

By how much must a 2-foot pendulum be shortened in order that its

time of complete oscillation may be halved?

18. If the diameter of a sphere be increased by 10%, by what per

cent will the volume be increased?

19. Show that if a city is receiving its water supply by means of

a main from a reservoir, the supply can be increased 25% by increasing

the diameter of the main by about 12%.

20. It is desired to buUd a ship similar in shape to one already in

use but having a 40% greater cargo space (or hold). By what per cent

must the beam (width of the ship) be increased?

[Hint. See the Hint to Ex. 6, p. 93.]
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50. Variation Geometrically Considered. If a variable

y varies directly as another variable x, we know (§ 48) that

this is equivalent to having the equation y= kx, where h is

some constant. If the value of k

is 1, this equation takes the defi-

nite form y = x, and we may now
draw its graph, the result being

a certain straight hne. If, on the

other hand, fc = 2, we have y = 2x,

and this again is an equation

whose graph may be drawn, lead-

ing to a straight line, but a differ-

ent one. In general, whatever

the value of h, the corresponding

equation has a straight-Hne
graph. The fact that in all cases the graph is a straight

line characterizes this type of variation; that is, characterizes

the type in which one variable varies directly as another.

Figure 36 shows the lines corresponding to several different

values of h.

In case a variable y varies in-

versely as another variable x, we
know (§ 48) that there exists an

equation of the form y = h/x,

where h is some constant. If we
let fc = l, this becomes y=\/x.

By letting x take a series of

values and determining the cor-

responding values of y from this

equation (thus forming a table

as in § 25) we obtain the graph.

Similarly, corresponding to the value fc = 2 we have y= 2/x,

and this equation has a definite graph which is different from

the one just mentioned. In general, whatever the value of k,

m
' if'""1
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the corresponding equation has a graph, but it is now to be

noted that these graphs are not straight lines; they are

hyperbolas. (See Ex. 2, § 28.) Figure 37 shows the curves

corresponding to several different values of k.

Note. Though these curves differ in form, they have the foUowing

feature in common: Through the origin draw any two straight hnes

(dotted in figure). Then the intercepted arcs AB, CD, EF, GH, etc.,

are similar; that is, the smallest arc when simply magnified by the proper

amount produces one of the others.

EXERCISES

Draw diagrams to represent the geometric meaning of each of the

following statements.

1. y varies directly as the square of x.

2. y varies inversely as the square of x.

3. y varies as the cube of x.

4. y varies directly as x, and y = Q when s = 2.

[Hint. The diagram here consists of a single line.]

5. y varies inversely as x, and j/ = 6 when x = 2.

6. The cost of n pounds of butter at 40c per pound is C = 40n.

7. The amount of the extension, e, of a stretched string is propor-

tional to the tension, t, and e = 2 in. when i = 10 lb. (See Ex. 11 (c),

p. 91.)

8. The pressure, p, of a gas on the walls of a retaining vessel varies

inversely as the volume, v; and p = 40 lb. per square foot when 11 = 10

cu. ft.

9. The length, L, of any object in centimeters is proportional to

its length, I, expressed in inches; and L = 2.54 cm. when l = lin.



CHAPTER VII

LOGARITHMS

I. General CoNsiDEKATioNsf

51. Definition of Logarithms. If we ask what power of

10 must be used to give a result of 100, the answer is 2

because 10^ = 100. Another common way of stating this is

to say that "the logarithm of 100 is 2." In the same way,

the power of 10 needed to give 1000 is 3 because 10^=1000,

and this is briefly stated by saying that "the logarithm of

1000 is 3." Similarly, the power of 10 that gives .1 is —1
because 10~'-=^\, or .1 by (B), § 8, and this is equivalent to

saying that "the logarithm of .1 is— 1." Likewise, the loga-

rithm of .01 is —2.

From these illustrations we readily see what is meant by

the logarithm of a number. It may be defined as follows:

The logarithm of a number is the power of 10 required to

give that number.

Note. A more general definition will be given in § 67, but this is

the one commonly used in practice.

We write log 100= 2 to indicate that the logarithm of 100

is 2. Similarly, log 1000 = 3, log .1=-1, log .01= -2, etc.

EXERCISES

1. What is the meaning of log 10000? What is its valiie!

2. What is the value of log .001? Why?

3. What is the value of log .00001 ? Why?
4. What is the value of log 10?

6. What is the value of log 1? (See VIII, § 8.)

6. As a number increases from 100 to 1000, how does its logarithm

change?

fParts I and II give definitions and essential theorems which should

be well understood before Part III, which describes the important
applications, is taken up.

98
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7. As a number decreases from .1 to .01 how does its logarithm

change? Answer the same as the number goes from .01 to .001 ; from
1 to 10; from 1 to 1000.

8. Explain why the following are true statements:

(o) log 100000 = 5. (b) log .0001 = -4.

(c) logVl0 = i.

[Hint. Remember VlO = lOX]

(d) log AyiO_=i.

(e) log -^100 =|.

[Hint. Remember •v/I00= •v^I^= 10». (§8.).]

(/) logVl=-h

52. Logarithm of Any Number. Suppose we ask what

the value is of log 236. What we are asking for (see defini-

tion in § 51) is that value which, when used as an exponent

to 10, will give 236; that is, we wish the value of x which will

satisfy the equation 10^ = 236. This question resembles

those in § 51, but is different because we cannot immediately

arrive at the desired value of x by mere inspection. AU we
can say here at the beginning is that x must he somewhere

between 2 and 3, because 10^=100 and 10^=1000, and 236

lies between these two numbers. In order to find a; to a finer

degree of accuracy, it is now natural to try for it such values

as 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, and 2.9, all of which he

between 2 and 3. The result (which for brevity we shall

here state without proof) is that when x= 2.3 the value of 10"^

is slightly less than our given number, 236, while if we take

x = 2.4 the value of 10* is slightly greater than 236. Thus x

hes somewhere between 2.3 and 2.4. In other words, the

value of log 236 correct to the first decimal place is 2.3.

It is now natural, if we wish to obtain x to stiU greater

accuracy, to try for it such values as 2.31, 2.32, 2.33, 2.34,

2.35, 2.36, 2.37, 2.38, and 2.39, all of which lie between 2.3

and 2.4 The result (which again is here stated without proof)

is that when x = 2.37 the value of 10"^ is shghtly less than our
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number 236, while if we take a; = 2.38 the value of 10^ is

slightly greater than 236. This means that the second

figure of the decimal is 7, after which we may say that the

value of log 236 correct to two places of decimals is 2.37

Proceeding further in the same maimer, it can be shown

that when a; = 2.372 the value of 10^ is slightly less than 236,

while for x= 2.373 the value of lO"" is slightly greater than 236.

Thus the value of log 236 correct to three places of decimals is

2.372 Similarly, it can be shown that the number in the

fourth decimal place is 9, and this is as far as it is necessary

to carry out the process, since the result is then sufficiently

accurate for all ordinary purposes. Hence log 236 = 2.3729,

correct to four places of decimals.

Note. It thus appears that logarithms do not in general come out

exact, though they do so for such exceptional numbers as 100, 1000,

10,000, .1, .01, etc. They can be expressed only approximately, yet

as accurately as one pleases by carrying out the decimal far enough.

In this respect they resemble such numbers as \/2, \/2, v^j etc.

Other examples of logarithms are given below. Note
especially the decimal part of each, which is correct to four

places.

log 283= 2.4518 log 196 = 2.2923 log 17=1.2304

log 6 = 0.7782 log 3.410 = 0.5328 log 5.75 = 0.7597

53. Characteristic. Mantissa. We have seen that the

logarithm of a number consists (in general) of an integral

part and a decimal part. These two parts of every logarithm

are given special names as follows:

The integral part of a logarithm is called the characteristic

of the logarithm.

The decimal part of a logarithm is called the mantissa of

the logarithm.

Thus, since log 236 = 2.3729, the characteristic of log 236 is 2, while

its mantissa is .3729

Similarly, the characteristic of log 6 is 0, while its mantissa is .7782
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EXERCISES

1. What is the characteristic of log 100? What the mantissa?

Answer the same questions for log 1000, log 10, and log 1.

2. What is the characteristic of log 185?

[Hint. Note that 185 lies between 10^ and 10'.]

3. What is the characteristic of log 310? of log 1287? of log 85?

of log 21? of log 4? of log 12? of log 13987?

4. For what kind of number can one tell hy inspection both the

characteristic and the mantissa of its logarithm? (See § 51.)

54. Further Study of Characteristic and Mantissa. We
have seen (§ 53) that log 236= 2.3729, which is the same as

saying that

(1) 102-3™= 236.

Let us now multiply both members of (1) by 10. The
left side becomes 102-3729+1 or 103-3729 (§ g, Formula I) while

the right side becomes 2360. That is, we have 103-3729=
2360, which is the same as saying that log 2360= 3.3729

If, instead of multiplying both sides of (1) by 10, we divide

both by 10, we obtain in like manner 102-3729-1= 23.6 (§8,

Formula V). That is, we have 101-3729= 23.6, which is the

same as saying that log 23.6= 1.3729

Finally, if we divide both sides of (1) by IO2, or 100, we
obtam 102-3729-2 = 2.36 That is, we have 100-3729 = 2.36 which

is the same as saying that log 2.36 = 0.3729

What we now wish to do is to compare the results which we

have just been obtaining, and for this purpose they are ar-

ranged side by side in a column below.

(Zofl- 2360 = 3.3729

. . Jlog 236= 2.3729
^'''

Slog 23.6 = 1.3729

[log 2.36 = 0.3729

Note that the mantissas here appearing on the right are

all the same, namely .3729, while the numbers appearing on



102 COLLEGE ALGEBRA [VII, § 54

the left (that is, 2360, 236, 23.6, and 2.36) are alike except

for the position of the decimal point; that is, they contain

the same significant figures. This illustrates the following

important rule.

Rule I. If two or more numbers have the same significant

figures (that is, differ only in the location of the decimal point),

their logarithms will have the same mantissas; that is, their

logarithms can differ only in their characteristics.

Thus, log 243, log 2430, log 24.3, log 2.43, log .243, and log .0243

all have the same mantissas. It is only their characteristics that can

be different.

EXERCISE

Apply Rule I, § 54, to tell which of the following logarithms have

the same mantissas.

log .167 log 8100 log 16.7 log 81 log .0072

log .081 log 7.2 log 720 log 1670 log 16700

II. To Determine the Logarithm of Any Number

55. Purpose of This Part. When we wish to determine

the value of a logarithm, as for example, to find log 236, we
can work out the characteristic and mantissa as explained

in § 52, but this requires considerable time. What we do

in practice is to use certain simple rules for determining the

characteristic, and we determine the mantissa directly from

certain tables which have been carefully prepared for the

purpose. We shall now state these rules (§§ 56-58) and

explain the tables and how to use them (§§ 59-61).

56. Characteristics for Numbers Greater Than 1. If we
look again at the results in (2) of § 54, we see that the char-

acteristic of log 2360 is 3. Thus the characteristic is 1 less

than the number of figures to the left of the decimal point.

Note. 2360 is the same as 2360., so that there are four figures here

to the left of the decimal point.
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Again, we see from (2) of § 54 that the characteristic of

log 236 is 2 and this, as in the case already examined, is 1 less

than the number of figures to the left of the decimal point.

Note. 236 is the same as 236., so there are three figures here to the

left of the decimal point.

Similarly, since the characteristic of log 23.6 is 1 (see (2)

of § 54) this again obeys the same law as just observed in

the other two cases; that is, the characteristic is 1 less than

the mmiber of figures to the left of the decimal point.

Finally, since the characteristic of log 2.36 is 0, the same

law is again present here.

The law which we have just observed can be shown in like

manner to hold good for the characteristic of the logarithm

of any number greater than 1; hence we may state the

following general rule.

Rule II. The characteristic of the logarithm of a number

greater than 1 is one less than the number of figures to the left

of the decimal point.

Thus, the characteristic of log 385.9 is 2; that of log 8.679 is 0.

EXERCISES

State, by Rule II, § 56, the characteristic of the logarithm of each

of the following numbers.

1. 385.4 7. 18.831

2. 461. 8. 3.1568

3. 7962. 9. 401.005

4. 2.7 10. 2967.6

5. 75.54 11. 85.

6. 165,781 12. 2.46879

State how many figures precede the decimal point of a number if

the characteristic of its logarithm is

13. 2. 15. 1. 17. 5.

14. 3. 16. 0. 18. 4.
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57. Characteristics for Positive Numbers Less Than 1.

We have seen (see (2) in § 54) that log 2.36 = 0.3729, which

is the same as saying that

(1) 10''-3™ = 2.36

Let us now divide both members' of this relation by 10.

We thus obtain (§ 8, Formula V)

100.3729-1= .236 or 10-i+o-3'29= .236,

which means (by § 51)

Zoff .236= -1+0.3729

Observe that — 1 +0.3729 is really a negative quantity, being equal

to —(1—0.3729) which reduces to —0.6271 However, it is more con-

venient for our present purposes to keep the longer form —1+0.3729
Note that this cannot be written as —1.3729 because the latter is equal

to -1-0.3729 instead of -1+0.3729

If, instead of dividing both members of (1) by 10, we
divide both by 10^, or 100, we obtain

100.3729-2= _0236 (or IQ-^+o-sns = .0236),

which means that

Zofl- .0236 =-2+0.3729

Similarly, by dividing (1) by 10', or 1000, we find that

Zofl' .00236= -3+0.3729

Finally, if we divide (1) by lOS or 10000, we find that

log .000236= -4+0,3729

Let us now compare the four results just obtained. Be-

ginning with the last result, we see that in the number
.000236 there are three zeros immediately to the right of the

decimal point; that is, between the decimal pomt and the

first significant figure. Corresponding to this, the charac-

teristic on the right is minus four. Hence the characteristic

is negative and 1 more numerically than the number of zeros

between the decimal point and the first significant figure.
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Similarly, in the number .00236 there are two zeros between
the decimal point and the first significant figure, and corre-

sponding to this there is a characteristic on the right of

minus three. Hence, as before, the characteristic here is

negative and numerically 1 more than the number of zeros

between the decimal point and the first significant figure.

This statement, which is true in all cases mentioned above,

can be proved for the characteristic of the logarithm of any
positive number less than 1. Hence we have the following

rule.

Rule III. The characteristic of the logarithm of a (positive)

number less than 1, is negative, and is numerically 1 greater

than the number of zeros between the decimal point and the first

significant figure.

Thus, the characteristic of log .0076 is —3; that of log .28 is —1.

Note. The logarithm of a negative number is an imaginary quan-

tity (as shown in higher mathematics), and hence we shall consider

here the logarithms of positive numbers only.

58. Usual Method of Writing a Negative Characteristic.

In § 57 we saw that

log .236= -1+0.3729

If we add 10 to this quantity and at the same time sub-

tract 10 from it we do not change its value, but we give

it the new form

9-f0.3729-10,

which is the same as 9.3729— 10. That is, we may write

log .236= 9.3729-10.

This is the form used in practice.

Likewise, instead of writing log .0236= -2+0.3729 (see

§ 57) we write in practice

log .0236 = 8.3729-10,
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and similarly we write

log .00236= 7.3729-10.

Thus, the usual method of expressing the characteristic

whose value is —1 is to write 9—10 for it; if it is —2, we
write 8— 10 for it; if it is —3, we write 7— 10 for it, etc.

For example, log .0076 has the characteristic 7-10.

EXERCISES

State, by Rule III, § 57, the value of the characteristic of the loga-

rithm of each of the following; state how it would be written if expressed

in the usual form described in § 58.

1. .06 -2, or 8-10. Ans. 6. .0835

2. .0071 7. .4578

3. .81 8. .00875

4. .00053 9. .15681

5. .835 10. .00005

How many zeros lie between the decimal point and the first sig-

nificant figure of a number when the characteristic of its logarithm is

11. -3 13. -5 15. 7-10

12. 9-10 14. 8-10 16. 6-10

59. Determination of Mantissas. Use of Tables. Sup-

pose we wish to determine completely the value of log 187.

By Rule II, § 56, we know that the characteristic is 2. To
find the mantissa, we turn to the tables (p. 108) and look in

the column headed N for the first two figures of the given

number, that is, for 18. The desired mantissa is then to be

found on the horizontal line with these two figures and in

the column headed by the third figure of the given number;

that is, in the column headed by 7. Thus in the present

case the mantissa is found to be .2718

Note. For brevity, the decimal point preceding each mantissa is

omitted from the tables. It must be supplied as soon as the mantissa

is used.

The complete value (correct to four decimal places) of

log 187 is therefore 2.2718
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Again, suppose we wish to determine log 27.6. The char-

acteristic (by § 56) is 1. The mantissa, by Rule I, § 54, is

the same as that of log 276; and the latter, as given in the

tables, is .4409 Therefore, log 27.6= 1.4409 Ans.

As a last example, suppose we wish to determine log .0173

The characteristic (by § 57) is —2, or 8-10. The mantissa,

by the rule in § 54, is the same as that of log 173 and the

latter, as obtained from the tables, is .2380 Therefore,

log .0173 = 8.2380- 10. Ans.

These examples illustrate how the tables together with

Rules II and III, §§ 56, 57, enable us to determine completely

the logarithm of any number provided it contains no more

than three significant figures. We may now summarize our

results in the following rule.

Rule IV. To find the logarithm of a number of three signifi-

cant figures:

1. Look in the column headed N for the first two figures of the

given number. The mantissa vnll then be found on the hori-

zontal line, opposite these two figures and in the column headed

by the third figure of the given number.

2. Prefix the characteristic according to Rules II and III,

§§ 56, 57.

EXERCISES

Determine the logarithm of each of the following numbers, expressing

all negative characteristics as explained in § 58.

1. 561 2. 217 3. 280 4. 800

5. 72.5 [Hint to Ex. 5. Note how log 27.6 was obtained in § 69.]

6. 7.25 7. 93. 8. 9. 0. .0136

10. .936 11. .0036 [Hint. Write as .00360]

12. 7550. 15. .35 18. .000831

13. .071 16. 55.7 19. i-

14. .7 17. 25,300 20. |-
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60. To Find the Logarithm of a Number of More Than

Three Significant Figures. Suppose we wish to determine

log 286.7 Here we have jour significant figures, while our

tables tell us the mantissas of numbers having three (or

less) significant figures (as in § 59 and in the preceding ex-

ercises). In such cases we proceed as follows.

From the tables on pp. 108-109 we have

log 286 = 2.4564
]

log 286.7 = ? [Difference = 2.4579-2.4564 = .0015

log 287 = 2.4579
J

Since 286.7 lies between 286 and 287, its logarithm must

lie between their logarithms. Now, an increase of one unit

in the number (in going from 286 to 287) produces an increase

of .0033 in the mantissa. It is therefore assumed that an

increase of .7 in the number (in going from 286 to 286.7) pro-

duces an increase of

.7 of .0015, or .00105,

in the mantissa.

Therefore,

log 286.7= 2.4564-1- .7 of .0015= 2.4564-f .00105= 2.45745,

so that

log 286.7= 2.4574 (approximately). Ans.

In practice the answer is quickly obtained as follows:

The difference between any mantissa and the next higher

one in the table (neglecting the decimal point) is called the

tabular difference. The tabular difference in this example is

4579-4564, or 15.

Taking .7 of this, we obtain 10.5, which (keeping only the first

two figures) we call 10, and adding this to 4564 we find 4574.

This, therefore, is the required mantissa of log 286.7, so that

log 286.7 = 2.4574 (approximately).
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Similarly, in finding log 286.75 the tabular difference (as before)
is 15. Taking .75 of 15 gives 11.25, which (keeping only two figures)

has the approximate value 11.

Hence the mantissa of log 286.75 is 4564+11=4575. Therefore
log 286.75 = 2.4575 Ans.

Below are two examples further illustrating how the above
processes are quickly carried out in practice. The student

should form the habit of writing the work in this form.

Example 1. Determine the value of log 48.731

Solution. Mantissa of log 487 = 6875
,
Tabular difference = 9

Mantissa of log 488 = 6884
,

.31X9 = 2.79 = 3 (approximately).

Hence

mantissa of log 48.731=6875+3 = 6878.

Therefore

log 48.731 = 1.6878. Ans.

Example 2. Determine the value of log .013403

Solution. Mantissa of 134 = 1271 1 „, , ,.^
> Tabular difference =32.

Mantissa of 135 = 1303 J

.03 X32 = .96 = 1 (approximately)

.

Hence
mantissa of log .013403 = 1271+1 = 1272.

Therefore

log .013403= -2+ . 1272 = 8.1272-10. Ans.

Note. The process which we have employed for determining a

mantissa when it does not actually occur in the tables is called inter-

polation. When examined carefully, it will be seen that the process is

based upon the assumption that if a number is increased by any frac-

tional amount of itself, the logarithm of the number will hkewise be

increased by the same fractional amount of itself. Thus, in finding the

mantissa of log 286.7 at the middle of p. 110, we assumed that the

increase of .7 in going from 286 to 286.7 would be accompanied by Mke

increase of .7 in the logarithm. Such an assumption, though not

exactly correct, is very nearly so in most cases and is therefore suffi-

ciently accurate for all ordinary purposes.
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Tables of logarithms much more extensive than those on pages

108, 109 have been prepared and are commonly used. See, for example.

The Macmillan Tables. By means of these, any desired mantissa may

usually be obtained as accurately as is necessary directly, that is,

without interpolation.

EXERCISES

Obtain the logarithm of each of the following numbers.

1. 678.3 12. .07235

2. 332.2 13. 745.23

3. 675.3 14. 132.36

4. 481.6 15. 51.745

6. 956.7 16. 430.07

6. 22.17 17. 5.2178

7. 8.467 18. 4.2316

8. 3.706 19. 1.6086

9. 2.408 20. .14653

10. 2.767 21. .074568

11. ,3456 22. .00738

61. To Find the Number Corresponding to a Given Loga-

rithm. Thus far we have considered how to determine the

logarithm of a given number, but frequently the problem is

reversed, that is, it is the logarithm that is given and we wish

to find the number having that logarithm. The method of

doing this is the reverse of the method of §§ 59, 60, and is

illustrated in the following examples.

Example 1. Find the number whose logarithm is 1.9547

Solution. Locate 9547 among the mantissas in the table. Having

done so, we find in the column N on the line with 9547 the figures 90.

These form the first two figures of the desired number.

At the head of the column containing 9547 is 1, which is therefore

the third figure of the desired number.

Hence the number sought is made up of the digits 901.

The given characteristic being 1, the number just found must be

pointed off so as to have two figures to the left of its decimal point

(Rule II, § 56). Therefore the number is 90.1 Ans.
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Example 2. Find the number whose logarithm is 0.6341

Solution. As in Example 1, we look among the mantissas of

the table to find 6341. In this case we do not find exactly this mantissa,

but we see that the next less mantissa appearing is 6336, while the one

next greater is 6345.

The numbers corresponding to these last two mantissas are seen

to be 430 and 431 respectively. Whence, if x represents the number

sought, we have

Mantissa of log 430 = 6335 \ j-^.^ ^ "j

Mantissa of log x = 6341 / ' >• Tabular difference = 10.

Mantissa of log 431 = 6345 )

Since an increase of 10 in the mantissa produces an increase of 1 in

the number, we assume that an increase of 6 in the mantissa will pro-

duce an increase of t%, or .6, in the number.

Hence the number sought has the digits 4306.

Since the given characteristic is 0, it is evident that the number

must be 4.306 (§ 56). Ans.

Note l. The student will observe that in Example 1 the given man-

tissa actually occurs in the tables, while in Example 2 it does not, thus

making it necessary in this last case to interpolate. (See the Note

in § 60.)

Note 2. The number whose logarithm is a given quantity is called

the antilogarithm of that quantity. Thus 100 is the antUogarithm of

2; 1000 is the antilogarithm of 3, etc.

EXERCISES

Find the numbers whose logarithms are given below.

1. 2.6656 11. 3.7430

2. 1.8351 12. 0.5240

3. 0.2742 13. 0.6970

4. 2.5855 14. 9.7400-10

5. 9.6830-10 15. 8.3090-10

6. 8.8028-10 16. 7.5308-10

7. 7.6425-10 17. 9.0046-10

8. 6.8842-10 18. 8.0012-10

9. 1.2517 19. 3.4968-10

10. 2.8583 20. 5.9654-10
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III. The Use of Logarithms in Computation

62. To Find the Product of Several Numbers. The pro-

cesses of multiplication, division, raising to powers, and ex-

traction of roots, as carried out in arithmetic, may be greatly

shortened by the use of logarithms, as we shall now show.

Let us take any two numbers, for example 25 and 37, and

determine their logarithms. We find that log 25 = 1.3979

and log 37= 1.5682 This means (§ 136) that

25 = 101-3979 and 37=10^-5682

Multiplying, we thus have

25X37 = 101-39^3 +1-5682 (§ 8, Formula I)

The last equality means (§ 51) that

log (25X37) = 1.3979+1.5682,

or log (25X37) =log 25+log 37.

Similarly, if we start with the three numbers 25, 37, and 18

we can show that

log (25X37X18)= log 25-Mog 37+log 18.

Thus we arrive at the following important rule.

Rule V. The logarithm of a 'product is equal to the sum of

the logarithms of its factors.

Thus log (13X.0156X99.8)=log 13-Hog .0156+log 99.8

The way in which this rule is used to find the value of the

product of several numbers is shown below.

Example 1. To find the value of 13X.0156X99.8

Solution, log 13 =1.1139

log .0156 = 8.1931-10
log 99.8 =1.9991

Adding, 11.3061 - 10, or 1.3061

Hence, by Rule V, the logarithm of the desired product is 1.3061

It follows that the product itself is the number whose logarithm is

1.3061 When we look up this number (as in § 61) we find it to be

20.23 Hence 13 X.0156X99.8 = 20.23 (approximately). Am.
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Example 2. To find the value of

8.45 X.678 X.0015 X956X. Ill

Solution, log 8.45= 0.9269

log .678= 9.8312-10

log .0015= 7.1761-10

log 956= 2.9805

log .111= 9.0453-10

Adding, 29.9600- 30 = 9.9600- 10.

Hence, by Rule V, the logarithm of the desired product is 9.9600— 10.

Therefore the product itseH is found (as in § 61) to be .912 (approxi-

mately). Ans.

These examples illustrate the following rule.

Rule VI. To multiply several numbers:

1. Add the logarithms of the several factors.

2. The sum thus obtained is the logarithm of the product.

3. The product itself can then be determined as in § 61.

EXERCISES

Find, by Rule V, § 62, the value of each of the following logarithms.

1. log (38.2X6.31). 3. log (167 X7.31X.00456).

2. log (6X4.21X.0015). . 4. log (3.81 X.00175X1.87).

Find, by Rule VI, § 62, the value of the following products. Check

your answer in Ex. 5 by multiplying out the long way as in arithmetic.

Compare the two results and see how great was the error committed

by following the short (logarithmic) method. Compare also the time

required for the two methods.

5. 56.8X3.47X.735 8. 34.56X18.16X.0157

6. .975X42.8X3.72 [Hint. See § 60.]

7. 896X40.8X3.75X.00489 9. 576.8X43.25X3.576X.0576

10. 60.573X8.087X.008915X1.2387

11. 23X23X23X23X23X23X23, (or 23').

12. 1.2X2.3X3.4X4.5X5.6X6.7X7.8

13. .31 X5.198X6.831X2.584X.00312 X.07568

14. Since 25X15 =375 we know by Rule V, § 62, that the logarithm

of 25 added to the logarithm of 15 is equal to the logarithm of 375.

Show that the values given in the tables for log 25, log 15, and log 375

confirm this result. Invent and try out several other similar problems.
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63. to Find the Quotient of Two Numbers. Let us take

any two numbers, for example 41 and 29, and write their

logarithms. We find

log 41 = 1.6128

log 29 = 1.4624

These mean that

41 = 10i«i28

and 29 = 10'«24

Whence, dividing the first of these equahties by the sec-

ond, we obtain

101.6128

414-29= = 101.6128-1.4624 (§ §, Fonuula V)

The last equality means that

log (41 -^ 29) = 1,6128 -1.4624= log 41 -log 29.

This result illustrates the following general rule.

Rule VII. Tine logarithm of a quotient is equal to the

logarithm of the dividend minus the logarithm of the divisor.

Thus log (467.3 -=-.00149)= log 467.3 -log .00149

The way in which this rule is used is shown below.

Example 1. To find the value of 236 -=-4.15

Solution. log 236 = 2.3729

log 4.15 = 0.6180

Subtracting 1.7549

Hence the logarithm of the desired quotient is 1.7549 (Rule VII.)

The number whose logarithm is 1.7549 is found (as in § 61) to be

56.875

Therefore 236-7-4.15 = 66.875 (approximately). Ans.

Example 2. To find the value of 1.46 -h .00578

Solution. log 1.46=0.1644 = 10.1644-10 (See Note p. 117.)

log .00578 = 7.7619-1

Subtracting, 2.4025

The number whose logarithm is 2.4025 is found to be 252.64

Therefore 1.46-^.00578=252.64 (approximately). Ans.
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Thus we have the following rule.

Rule VIII. To find the quotient of two numbers:

1. Subtract the logarithm of the divisor from the logarithm

of the dividend.

2. The difference thus obtained is the logarithm of the quo-

tient.

3. The quotient itself can then be determined as in § 61.

Note. To subtract a negative logarithm from a positive one, or to

subtract a greater logarithm from a less, increase the characteristic of

the minuend by 10, writing —10 after the mantissa to compensate.

Thus, in Example 2, we wished to subtract the negative logarithm

7.7619— 10 from the positive one 0.1644 Therefore 0.1644 was written

in the form 10.1644— 10, after which the subtraction was easily per-

formed.

EXERCISES

Find, by Rule VII, § 63, the value of each of the following logarithms.

i. log (17-:- 8). 3. log (37.5 -5- .0018).

2. log (218^7.15). 4. log (8.69-M13).

Find, by Rule VIII, § 63, the value of each of the following quo-

tients. . Check your answer in Ex. 5 by dividing out the long way as

in arithmetic. Compare the two results and see how great was the

error committed by following the short (logarithmic) method.

5. 246-^15.7

6. 34.7-^5.34 9. 3.25-^.00876

7. 389.7 H-4.353 [Hint. See Note in § 63.]

[Hint. See § 60.] 10. 49.6^87.3

8. 45.67+38.01 40.3X6.35

3.72

[Hint. Find the logarithm of the numerator by Rule V, § 62.]

.0036X2.36 ,„ 24.3 X.695 X.0831
12. 13.

.0084 8.40 X.216

14. Since 27-^9 = 3 we know, by Rule VII, § 62, that the logarithm

of 9 subtracted from the logarithm of 27 is equal to the logarithm of 3.

Show that the values given in the tables for log 9, log 27, and log 3

confirm this result. Invent and try out several other similar problems

for yourself.
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64. To Raise a Number to a Power. Let us take any

number, for example 25, and raise it to any power, say the

fourth. We then have 25^ which means 25X25X25X25.
Hence, by Rule V, § 62, we have

log 25* = log 25+log 25+log 25+log 25, or log 25*= 4 log 25.

This illustrates the following rule.

Rule IX. The logarithm of any power of a number is

equal to the logarithm of the number multiplied by the ex-

ponent indicating the power.

Thus log 3.17i'' = 101og 3.17; similarly, log .00174« = 6Iog .00174

The way in which this principle is used to raise a number
to a power is shown below.

Example 1. To find the value of 2.37*

Solution. log 2.37 =0.3747

4

Multiplying, 1.4988

Hence

log 2.37^ = 1.4988 (Rule IX)

The number whose logarithm is 1.4988 is found to be 31.535

Therefore

2.37^ = 31.535 (approximately). Ans.

Example 2. To find the value of .856^

Solution. log .856= 9.9325-10

5

Multiplying, 49.6625 -50 = 9.6625 - 10

The number whose logarithm is 9.6625 — 10 is .4597

Therefore

.856* = .4597 (approximately). Ans.

Thus we have the following rule

Rule X. To raise a number to a power:

1. Multiply the logarithm of the number by the exponent

indicating the power.

2. The result thus obtained is the logarithm of the answer.

3. The answer itself can then be determined as in § 61.
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EXERCISES

Find, by Rule IX, § 64, the value of each of the following logarithms.

1. log 16^ 2. log 3.12^ 3. log .01762 4. log 36.64*

Find, by Rule X, § 64, the value of each of the following expressions.

6. 8.82'

Check your answer by raising 8.82 to the third power as in arith-

metic. Compare the two results and see how great was the error

committed by following the short (logarithmic) method.

6. 4.12* 7. 4.123*

8. .175^ [Hint. See Ex. 2 in § 64.]

9. 81^X.0152 [Hint. Combine the rules of §§ 62 and 64.]

10. 43X8.92X.075'

8.76X53.9X4.5'

2.32X3.15X5.14''

[Hint. Use Rules VI, VIII, X.]

12. Since 9^ = 729 we know, by Rule IX, § 64, that three times the

logarithm of 9 is equal to the logarithm of 729. Show that the values

given in the tables for log 9 and log 729 confirm this result. Invent

and try out several other similar problems for yourself.

65. To Extract Any Root of a Number. Let us take any
number, for example 36, and consider any root of it, say the

fifth; that is, let us consider -v'^.
Supposing X to be the value of the desired root, we have

Now the logarithm of the first member of this equality is

equal to 5 log x by Rule IX.

Hence 5 log a;= log 36, or log x = ^ log 36.

This illustrates the following rule.

Rule XL The logarithm of the root of a number is equal

to the logarithm of the radicand divided by the index of the root.

Thus log \/Tn=\ log 2.73; similarly, log {/.01685=1 log .01685

The way in which this principle is used to extract the roots

of numbers in arithmetic will now be shown.
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Example 1. To find the value of v^86.2

SoLTJTioN. log 85.2 = 1 .9304,

so that i of log 85.2 = 0.4826

Hence log -v'^5i2 = 0.4826 (Rule XI)

The number whose logarithm is 0.4826 is 3.038 (§ 61)

Therefore •v^85.2 = 3.038 (approximately). Ans.

Example 2. To find the value of -v^.0875

Solution. log .0875 = 8.9420-10,

so that ^ of log .0875 = -^(8.9420 -10) =^(48.9420 -50)

= 9.7884- 10. (See Note below.)

The number whose logarithm is 9.7884-10 is .6143 (§ 61)

Therefore \^ .0875 = .6143 (approximately). Ans.

These examples illustrate the following rule.

Rule XII. To find any root of any number.

1. Divide the logarithm of the number by the index of the root.

2. The quotient obtained is the logarithm of the desired root.

3. The root itself can then be determined as in § 61.

Note. To divide a negative logarithm, write it in a form where

the negative part of the characteristic may be divided exactly by the

divisor giving —10 as quotient as in Example 2.

EXERCISES

Find, by Rule XI, § 65, the value of each of the following logarithms.

1. log \/T6. 2. log -(7312 3. log -i^m75 4. log ^^38^

Find, by Rule XII, § 65, the value of each of the following expres-

sions. Check your answer in Ex. 5 by extracting the square root of

315 (correct to three decimal places) as in arithmetic. Compare the

two results and see how great was the error committed by following

the short (logarithmic) method.

6. VsTE 9. -\/8.76X.0153

6. 1^4.32 [Hint. Use Rules IX and XL]

7. v'T325 10. -^/STeX v^8?76

8. -v/^0957 11 /
576X9.132

[Hint. See Example 2 in § 65.] '^3.8X5.32^'
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APPLIED PROBLEMS

Solve the following exercises by logarithms.

1. How many cubic feet of air are there in a schoolroom whose

dimensions are 50.5 ft. by 25.3 ft. by 10.4 ft.?

2. How many gallons will a rectangular tank hold whose dimensions

are 8 ft. 10 in. by 9 ft. 3 in. by 10 ft. 1 in.?

3. How much wheat will a cyhndrical bin hold if the diameter of

the base is 9 ft. 5 in. and the height is 40 ft. 4 in.?

4. How much would a sphere of soHd cork weigh if its diameter

was 4 ft. 3 in., it being known that the specifio gravity of cork is .24?

[Hint. To say that the specific gravity of cork is .24 means that

any volume of cork weighs .24 times as much as an equal volume of

water. Water weighs 62.5 pounds per cubic foot.]

6. The diameter d in inches of a wrought-iron shaft required to

transmit h horse-power at a speed of n revolutions per minute is given

by the formula <^ = 'V~5f Find the diameter required when 135 horse-

power is to be transmitted at a speed of 130 revolutions per minute.

6. A wire 135 feet long is suspended from two poles of equal height

placed 130 feet apart. Compute the sag, using the formula of Ex. 20,

page 42.

7. If the three sides of a triangle are of lengths a, b, c respectively,

and we place s=^((i+6+c), then the area is expressed by the formula

s= \/s{s — a){s— b)(s — c).

Determine the area of the triangle whose sides are 3.15 inches,

4.87 inches and 2.68 inches.

8. The height ff of a mountain in feet is given by the formula

F =49,000f^Vl+—

V

' \R+rJ \ 900 /

where B, r are the observed heights of the barometer in inches at the

foot and at the summit of the mountain, and where T, t are the observed

Fahrenheit temperatures at the foot and summit.

Find the height of a mountain if the height of the barometer at

the foot is 29.6 inches and at the summit 25.35 inches, while the temv

perature at the foot is 67° and at the summit 32°.
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66. Solution of Exponential Equations. The equation

(1) 2^= 32,

wherein the unknown number, x, appears in the exponent, is

an example of an exponential equation. In the present

instance, the equation may be solved immediately by inspec-

tion, X being equal to 5, since 2* = 32. But if, instead of (1),

we start with the foUowiag equally simple exponential equa-

tion

(2) 2"= 48

the value of x can be obtained only approximatively, and
its determination involves the use of logarithms in the

manner shown below:

Solution. Taking the logarithm of each member in (2),

X log 2 = log 48. (Rule IX)

Therefore

.=!^ =1:^^5.58+ Ar..
log 2 0.3010

EXERCISES

Solve each of the following exponential equations, using logarithms.

1. 4^ = 10. 6. 32^-20-3^+99 = 0.

2 2^ = 80 f^"^- 32^-20-3^+99 =
(3^-9) (3^-11).

3. 3P = 23.
^ /3- = 2y,

4. .2^=3.
{"^^-y-

'2^+» = 6,

5. 13^ = .281 ®' \2^+i = 3i'.

IV. General Logarithms

*67. Logarithms to Any Base. In § 51 we defined the logarithm

of a number as the power to which 10 must be raised to obtain that

number. Thus, from such equalities as 10^= 100, 10^ = 1000, etc., we
had log 100 = 2, log 1000 = 3, etc. Strictly speaking, this defines the

logarithm of a number to Ike base 10, or, as it is usually called, a common
logarithm.

We may and frequently do use some other base than 10. For
example, since 3^ = 9, 3^ = 27, 3^ = 81, etc., we can say that the loga-
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rithm of 9 to the base 3 is 2, the logarithm of 27 to the base 3 is 3,the

logarithm of 81 to the base 3 is 4, etc. The usual way of denoting this is

to write log39 = 2, log327 = 3, logaSl =4, etc. The number being used as

the base is placed to the right and just below the symbol log.

Similarly, we have log2l6 = 4, log864 = 2, log5l25 = 3, etc.

Thus we have the following general definition. The logarithm oj

any number x to a given base a is the power of a required to give x. It is

written logaX. Any positive number except 1 may be used as the base.

Note. When the base a is taken equal to 10 (that is, in the usual

case) we write simply log x instead of logio^;

EXERCISES

State first the meaning and then the valiie of

1. log24. 2. logaS. 3. legale. 4. logg^.

6. logal. 6. log4^. 7. log5.2 8. log832.

*68. Logarithm of a Product. We can now show that Rule V,

§ 62, holds true whatever the base. That is, if M and TV are any two

numbers, and a the base, then

logdJWiV = logoAf +IogaiV.

Pkoop. Let a; = logaM and 2/ = logaiV. Then a'' = M and a^ =N
(§ 67). Hence a^ • aV = MN, or a''+y = MN. But the last equahty

means that

logoMiV=a;+2/=log^M+logJV. (§67)

*69. Logarithm of a Quotient. Rule VII, § 63, holds true whatever

the base. That is, if M and N are any two numbers, then

l0ga{M-i-N) =logaM-logaN.

Proof. Let x=logaM and j/=logoiV. Then a^ =M and aV=N.

(§ 67). Hence, d'-T-aV = M^N, or a'^« = M-^N. But the last equality

means that

loga(M-i-N)=x-y=\ogaM-logaN.

*70. Logarithm of a Power of a Number. Rule IX, § 64, holds

true whatever the base. That is, if ikf is any number and n any (positive

integral) power, then

logaM" = wlogailf.

Proof. Let x=\ogaM. Then a^ =M (§ 67) and hence o"^ = Af".

But the last equality means that

logaM"-=nx=n logail/.
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*71. Logarithm of a Root of a Number. Rule XI, § 65, holds trae

whatever the base. That is, ii M is any number and n any (positive

integral) root, then

lo^\/M = -logcLM.

Proof. Let x=logailf. Then a^ = Af (§67) and hence (0^)'^" =

Af'/", or a"^'^ = v^Af . But the last equality means that

1
loga\/M-- - logaAf

.

*72. Summary. From the results estabhshed in §§ 67-71 it appears

that Rules V-XII, §§ 62-65, are not only true when the base is 10 (as

was there taken) but they are true for any base. Tables exist for various

bases other than 10, but we shall not consider them.

Note. The reason why 1 cannot be used as a base is that 1 to any

power is equal to 1, that is, we cannot get different numbers by raising

1 to different powers.

*73. Historical Note. Logarithms were first introduced and em-

ployed for shortening computation by John Napiek (1550-1617), a

Scotchman. However, he did not use the base 10, this being first done

by the English mathematician Briggs (1556-1631), who computed

the first table of common logarithms.

*74. Calculating Machines. The Slide-Rule. Machines have been

invented and are now coming into very general use, especially by engi-

neers, by which the processes of multiphcation, division, involution,

and evolution can be immediately performed. The construction of

Fig. 38. The Slide Rule

these machines depends upon the principles of logarithms, but to

describe the machines and their methods of working would take us

beyond the scope of this text. The simplest machine of this kind is

the slide rule, the use of which is easily understood. A simple shde

rule with directions is inexpensive and may ordinarily be secured from

booksellers. A full description of the instrument and its use may be

found in the Macmillan Tables (The Macmillan Co., New York).



CHAPTER VIII

COMPOUND INTEREST AND ANNUITIES

75. Compound Interest. The interest which P dollars

will bring at the end of one year if placed at the rate of interest

i is evidently PXi, ov Pi. If the interest Pi thus received be

added to the principal, or P, the new principal at the end of

the ^rsi year is P+Pi, or

(1) P{l+i).

If the principal (1) be again allowed to draw interest for

one year at the same rate i, the interest received will be

P(l+i)Xi, or P(l+i)i, and if this be added (compounded)

to the former principal (1), the amoimt of the principal at

the end of the second year becomes P(l+i)+P(l+i)i, which

may be written P{l+i){l+i), or

(2) P(l+iy-

Similarly, the amount at the end of the third year is

P(l+^)^

and, in general, we have the following formula for the amount

An which will be realized from a principal P by compounding

the interest upon it annually for n years at the rate i:

(3) A„=pa+i)".
Example 1. What will be the amount of $225 loaned for 5 years

at 8% compound interest?

SoLTTTioN. Here P = 225, i = .08 and n=5. Hence, using the

formula, we find A5 = 225(1 +.08)5= 225 Xl.08^

The actual computation of A is now best carried out by logarithms.

Thus, taking the logarithm of each member of the last equation, we
have, by Rules V and IX, §§ 62, 64,

log ^5= log 226+5 log 1.08=2.3522+5X0.0334

= 2.3522 +0.1670 = 2.5192

Therefore, by § 61, ^5 = 1330.50 Am.

125
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Example 2. What principal will amount to $1000 in 10 years at

5% compoxind interest?

Solution. Here Aio = 1000, P = ?, t = .05, n = 10 so that the formula

gives 1000 = P(l+ .05)i° = P(1.05)^''- The problem thus resolves itself

into solving this equation for P, and this is most readily done by use

of logarithms as follows:

log 1000 =log P+10 log 1.05

Hence log P=log 1000-10 log 1.05 = 3-0.2120 = 2.788 Therefore,

by § 61, P = $613.70 Ans.

EXERCISES

1. Find the amount of $400 for 10 years at 3% compound interest.

2. Find the amount of $100 for 20 years at 6% compound interest.

3. What principal loaned at 4% compound interest will amount to

$1500 in 10 years?

4. What sum of money invested at 4% compound interest from a

child's birth until he is 21 years old will yield $1000?

6. In what time will $800 amount to $1834.50 if put at compound

interest at 5%?
[Hint. Note that the unknown time becomes determined by an

exponential equation which can be solved as in § 66.]

6. How long will it take a sum of money to double itself at 5%
compound interest ?

7. What is the rate per cent when $300 loaned at compound interest

for 6 years will yield $402?

8. Solve the formula for n in terms of A, P, and i.

9. Construct a graph to show the compound amount of 1 dollar at

6% as the time varies.

10. If, instead of the interest being compounded annually as in

the formula of § 67, it is compounded m times a year, show that the

formula becomes

11. In how many years will $300 amount to $400 at 6% compound
interest, the interest being compounded quarterly?

12. What sum should be deposited in a bank paying 4% compounded

semi-annually in order to discharge a debt of $7430 due ten years

later.
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76. Annuities. An annuity is a series of equal payments

made at equal intervals during a fixed period of time. For

convenience, the first payment will here be regarded as made
at the end of the first year, the second payment at the end of

the second year, etc.

Thus, if A has a life insurance policy in the form of an annuity in

case of death to B of $1000 a year for 10 years, then at the end of the

first year after A's death the company issuing the policy is to pay B
$1000, and a like payment is to be made at the end of the second year,

third year, etc., up to the end of the tenth year. Evidently, if interest

be taken into account, such a policy will be worth more to B than the

mere total of $10,000 thus received, since he may during the 10 years

be reinvesting the various pajrments so as to receive additional returns.

The following fundamental general problem thus arises.

If we represent the amount of each payment by a, the num-
ber of yearly payments by n and the interest rate by i, what

will be the accumulated value F„ of the annuity at the end

of the n years? The answer, expressed as a formula for y„ in

terms of a, n and i, is readily obtained as follows.

Using the formula of § 75, we see that the acciunulated

values of the first, second, nth. payments will be:

a(l+i)"-S a{l+i)"-\ ••• , ail+iy, a{l+i), a.

The desired value, Vn, is therefore the sum of these n

expressions. But they are seen to form a geometric progres-

sion whose first term is a and whose common ratio is (l+i).

The sum is therefore readily expressed by use of the first

formula in § 39, which gives

(4) F„ =a^^±f^.

By the present value of an annuity of a dollars per

annum is meant the amount in cash that one could afford to

pay for the privilege of receiving the payments in their regular

order. A second fundamental problem thus arises: What
is the present value P of an annuity of a, payable in n yearly



128 COLLEGE ALGEBRA [VIII, § 76

installmeiits when the interest rate is if This again may be

answered by simple considerations based on the properties

of a geometric progression. Thus, the present value of the

first payment can be obtained from the formula of § 75

by placing in it A=a, n=l and solving for P, thus giving

a(l +i)~^. Similarly, the present value of the second payment

is a{\+i)~^, that of the nth payment being (l+i)~". The

desired value of P is therefore the sum of these, or

a(l+i)-'+a(l+i)-='+ . . . +a(l+i)-".

This being a sum of terms forming a geometric progression,

its value can be readily expressed as before by the first

formula of § 39, which gives as the desired formula

(5) /'„ =ai^:^^.

EXERCISES

1. What will be the accumulated value of an annuity of $100 for

10 years at 6%.

Or s 1 100

,

By logarithms, (1.06)'" is found to be 1.7904, hence (1.06)i''-l =
0.7904 Therefore

log 7,0= log 100+log 0.7904 -log .06

= 2+ (9.8978-10)- (8.7782-10) =3.1196

Hence Vio=$1317, the accumulated value of the annuity. Ans.

2. What is the present value of an annuity of S300 for 10 years

at 6%?

3. How much must a man save annually and deposit in a savings

and loan company paying 5%, compounded annually, in order to pay
off a mortgage of $2000 after 5 years?

4. A man buys a house and lot, paying $1500 down and agreeing

to pay $1000 annually for the next 4 years. What is the equivalent

cash price if money is worth 6% per year?

[Hint. Note that the $1500 payment is not a part of the annuity.]

SoLTjnoN. 7io=-[(H-i)''-l]=— [(1.06)i»-l].
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5. It is estimated that a certain mine will be exhausted in 10 years.

If the mine jdelds a net annual income of $10,000, what would be a fair

purchase price, money being worth 5%7

6. Show that if, instead of the installments being made annually,

they are made m times a year and the interest compounded at each

payment, then the two formulas of § 76, remain the same except

that ilm is to be substituted for i and mn for n.

1. Using the results of Ex. 6, answer the following question: A
piano is sold for $100 cash and $50 to be paid semi-annually for 3 years.

What is the equivalent cash price, if money is worth 6%, compovmded

semi-annually ?

8. A city is to issue 20-year bonds to the amount of $100,000 for

the erection of public schools and it is desired to establish a "sinking

fund" to provide for the extinction of the debt when due. How much
must be deposited in the sinking fund at the end of each year, money
being worth 4% and compounded annually?



CHAPTER IX

MATHEMATICAL INDUCTION—BINOMIAL THEOREM

77. Mathematical Induction. The three following purely

arithmetic relations are easily seen to be true:

1+2 = 1(2+1),

1+2+3=1(3+1),
1+2+3+4= 1(4+1).

We might at once infer from these that if n be any positive

integer, there exists the algebraic relation

(1) l+2+3+4+-+n= ^(n+l),

the dots indicating that the addition of the terms on the left

continues up to and including the number n.

For example, if n = 8, this would mean that

1+2+3+4+5+6+7+8 = 1(8+1).

Again, if n = 10, it would mean that

1+2+3+4+5+6+7+8+9+10 = ^(10+1).

That these are indeed true relations is discovered as soon as we
simplify them. Let the pupil convince himself on this point.

It is to be carefully observed, however, that the inference

just made, namely that (1) is true for any n, is not yet justi-

fied, for we have only shown that (1) holds good for certain

special values of n, and we could never hope to do more than

this however long we continued to try out the formula in

this way.

Something more than a knowledge of special cases must always be

known before any perfectly certain general inference can be made.
For example, the fact that Saturday W£is cloudy for 38 weeks in suc-

cession gives no certain information that it will be so on the 39th week.

We shall now show how the general formula (1) may be

130
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established free from all objection; that is, in a way that

leaves no possible question as to its truth in all cases.

Let r represent any one of the special values of n for which
we know (1) to be true. Then

(2) 1+2+3+4+.. .+r=^(?-+l).

Let us add (r+1) to both sides. The result is

1+2+3+4+.. .+r+(7-+l)=^(r+l)+ (r+l).

In the second member of the last equation we may write

^(/•+l)+ (r-+l) = (r+l)(^^+l^ = (r+l)^^U^(r+2).

while the first member has the same meaning as

l+2+3+-+ (r+l).

Thus, (2) being given us, it follows that we may write

(3) l+2+3+4+...+ (r+l)=^(j-+2).

But (3) is seen to be precisely the same as (2) except that

r+1 now replaces r throughout. This means that if (1) is

true when n = r, as we have supposed, then it holds true

necessarily for the next greater value of n, which is r+1.

The original fact which we wished to establish (namely,

that (1) is true for any n) now follows without difficulty.

In fact, we know (see beginning of this section) that (1) is

true when n = 4, from which it now follows that it must be

true also when n= 5. Being true when n= 5, the same

reasoning shows that it must be true also when n= 6. Thus,

we may reach any given integer n, however large it may be.

Hence (1) is true for any such value of n.

This method of reasoning illustrates what is termed

mathematical induction. Another example of the process will

now be given, in a more condensed form.
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Example. Prove by mathematical induction that

(1) l+3^-54-7^ \-{2n— l)=n^. {n = any positive integer)

Solution. When n = l, the formula gives 1 = 1*; when n = 2, it

gives 1+3 = 2^; when n = 3, it gives 1+3+5 = 3*, all of which arith-

metical relations are seen to be correct.

Let r represent any value of n for which the formula has been

proved. Then

(2) l+3+5+7+-+(2!— I)=r2.

Adding (2r+l) to each member gives

(3) l+3+5+7+-+ (2r+l) =j^+(27-+l) =r'+2r+l = {r+lf.

But (3) is the same as (2) except that r has been replaced throughout

by J-+1. Hence, if (1) is true for any value of n, such as r, it is neces-

sarily true also for that value of n increased by 1.

Now, we know (1) to be true when n = 3. (See above.) Hence it

must be true when n = 4. Being true when n = 4, it must be true when

n = 5, etc., and in this way we now know that (1) is true for any value

(positive integral) of n whatever.

EXERCISES

Prove the correctness of each of the following formulas by mathe-

'matical induction, n being understood to be any positive integer.

1. 2+4+6+8 H |-2n = n(n+l).

[Hint. First try out for n = l, n = 2, and « = 3. Let r represent a

number for which the formula holds. Add 2(r+ l) to both members
of the resulting equation and compare results.]

2. 3+6+9+ 12H [3n=^{n+l).

3. l*+22+32+4*+-+»i^= in(n+l)(2ra+l).

4. 2H4*+6*H h(2w)* =|n(n+l)(2n+l).

6. l^+2?+3^+i^+-+n^ =ln\n+ lf.

1 1 _1_ 1 n

r^ 2^ 3^"^ n(n+l)~n+l'

7. 2+2^+2^2^ H |-2" = 2(2''-l).

8. Prove that if n is any positive integer, o"— 6" is divisible by o — 6.

[Hint. Since ar+^-b'^+'^=a(a'-b'^)+¥ {a-b), it follows that

a'' +^ —¥ +^ will be divisible by a — b whenever a^— b' is divisible by a— b.]

9. Prove that o*'*— b*" is divisible by a+b.
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78. The Binomial Theorem. If we raise the binomial

(a+x) to the second power, that is, find (a+xY, the result

is d'+2ax+x^. Similarly, by repeated multipHcation of

(a+x) into itself, we can find the expanded forms for (a+xY,
(a+x)*, (a+xy, etc. The results which we find in this way
have been placed for reference in a table below:

{a+xy= a^+2ax+x\

{a+xy = a^+3a'x+3ax^+:(?.

(a+xy= a^+5a*x+10a^x'^+10aV+5ax*+x\

{a+xy= a^+Qa^x+15a^iy'+20a'x'+15a'x*+6a3^+x',etc.

Upon comparing these, it appears that the expansion of

(a+cc)", where n is any positive integer, has the following

properties:

1. The exponent of a in the first term is n, and it decreases

by 1 in each succeeding term.

The last term, or a;", may be regarded as a" x" (See § 8).

2. The first term does not contain x. The exponent of x in

the second term is 1 and it increases by 1 in each succeeding

term until it becomes n in the last term.

3. The coeffiderd of the first term is 1; that of the second

term is n.

4. If the coefficient of any term he multiplied by the exponent

of a in that term, and the product be divided by the number of

the term, the quotient is the coefficient of the next term.

For example, the term 6a^a^, which is the third term in the expansion

of (a+x)*, has a coefficient, namely 6, which may be derived by mul-

tiplying the coefficient of the preceding term (which is 4) by the exponent

of a in that term (which is 3) and dividing the product thus obtained

by the number of that term (which is 2).

5. The total number of terms in the expansion is n+1.
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The results just observed regarding the expansion of

(a+z)'', where n is any positive integer, may be summarized

and condensed into a single formula as follows:

{a+x)" = a"+na"-ix+"^" ^\"-^x^

n(n-l)(n-2)
^ 1-2 -3 ^ ^^ *

the dots indicating that the terms are to be supplied in the

manner indicated up to the last one, or (n+l)st.

This formula is called the binomial theorem. By means

of it, one may write down at once the expansion of any

binomial raised to any positive integral power.

That the formula is true in all cases, when n is a positive integer,

will be proved in detail in § 80. We assume its truth here for those

small values of n for which its correctness is easily tested.

Example 1. Expand (o+x)*.

Solution. Here to = 6, so the formula gives

1-2-3-4-5 1-2-3-4-5-6
Simplifjdng the various coefficients by performing the possible

cancelations in each, we obtain

(o+a;)^ =a«+6a5x+15aV+20o^x'+15aV+6oa^+x^ Ans.

Note. It may be observed that the coefficients of the first and
last terms turn out to be the same; likewise the coefficients of the second

and next to the last terms are the same, and so on symmetrically as

we read the expansion from its two ends.

Example 2. Expand (2— m)^.

SoLiTTioN. Here a = 2, x= —m, and n = 5. The formula thus gives

(2-m)5 =2H5 2^-ot)+^ • 2^(-m)'+ ^ ' ^ '
^

• 2\-mf

,5-4-3-2„^ sd ,5-4-3-2-l
+rTT:¥T-4 •

2(-)^ +1.2.3.4.5^-^-
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Simplifying the coefficients (as in Example 1), this becomes

(2-to)S=2H5 • 2^(-m)+10 • ^(-m)''+lQ 2\-mf
+5 • 2(-my+(-m)K

Making further simplifications, we obtain

(2-TO)5=32-80m+80?n2_40TOHl0m*-m^ Ans.

Note. The result for {2-xf is the same as that for {2+xf except

that the signs of the terms are alternately positive and negative instead

of all positive. A similar remark apphes to the expansion of every
binomial of the form (o— a;)" as compared to that of (a+x)".

17. (1+1)'
V y/

EXERCISES

Expand each of the following powers.

1. ix+yf. 9. (a^-x^)\

2. {a+b)\ 10. (2a+l)^.

3. {x-yf. 11. {x-3yf. 5

4. {a -by. 12. (1+:d2)6. 18. ("--j •

6. (2+r)5. 13. (l-x)«. _
6. {a+x?. 14. (x-if. " «^o^+</m'-

7. (g-3f. 16. {3a^-l)\

8. (a^+xf. 16. (o+a;)!".

/ 1\3
20. (V2+.

79. The General Term of (a+x)". The third term in the

expansion of (a+x)", as given by the formula in § 78, is

—-

—

—-a"~V. {third term).

Observe that the exponent of x is 1 less than the number

of the term; the exponent of a is n minus the exponent

of x; the last factor of the denominator equals the exponent

of x; in the numerator there are as many factors as in the

denominator.

Precisely the same statements can be made as regards

the fourth term, or

n(n-l)(n-2)

1 -2 -3
-a"~V. (fourth term).
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In the same way, it appears that the above statements can

be made of any term, such as the rth, so that the formula for

the rth term is

rthterm = 1
. 2 . 3... (r-1) " "^ '

Example. Find the 7th term of {2b-cf.

Solution. Here

a = 2b, » = (— c), w = 10, and r = 7.

Therefore (using the formula), the desired 7th term is

10 • 9 • 8 7 • 6 • 5 ,„^,., ,„
Seventh term=-—--—————- • (2b)H-cf

1 • 2 • 3 • 4 • 5 • 6

=210(2b)^(-c)« = 33606V. Ans.

EXERCISES

Find each of the following indicated terms.

1. 5th term of (a+xf.

2. 6th term of (s-i/)^

3. 7th term of {2+xf.

4. 10th term of (m-w)".

5. 6th term of (a^-b^)^.

6. 20th term of (1+x)^.

80. Proof of the Binomial Theorem. The way in which

the binomial formula was estabUshed in § 78 is, strictly

speaking, open to objection because we there made sure of

its correctness only for certain special values of n, such as

n= 2, n = 3, n = 4, and n = 5. Though the formula holds

true, as we saw, in these cases, it does not follow necessarily

that it is true in every case that is, for every positive integral

value of n. We can now establish this fact, however, by the

process of mathematical induction, when n is a positive

integer.

Let m represent any special value of n for which the for-

7.
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mula has been established (as, for example, 2, 3, 4, or 6).

Then we have

/,N m{m—l) •• (m—r+2) .,

Let us now multiply both members of this equation by
a+x. On the left we obtain (a+a;)™"''\ On the right we shall

have the sum of the two results obtained by multiplying the

right side of (1) first by a and then by x, that is we shall have
the sum of the two following expressions:

1-2

m(m-l) - (m-r+2) +a^^^V-'+^.+ax™,
1 .2-3 ••• (r-1)

and

+ --+max"'+x^+\

Adding these, and making the natural simphfications in

the resulting coefficients of a^x, (f^^x^, etc., and equating

the final result to its equal on the left (namely (a+x) "'"'"', as

noted above) gives

(a+x)™+*=a'"+*+(m+l)a'"x+^^^^^^a'"-V+-

^^^ ^ 1.2.3...(r-l) " "^ + ^"^
•

But (2) is precisely (1) except for the substitution of m+1
for m throughout. Hence, if the binomial formula holds for

any special value of n, as m, it necessarily holds for the next

larger value, namely m+1. But we have already observed

that it holds when n= 5. It must, therefore, hold when
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n= 5+l, or 6. But if it holds when n= 6, it must Hkewise

hold when w = 6+l, or 7. Thus we may proceed until we
arrive at any chosen value of n whatever. That is, the for-

mula must be true for any positive integral value of n.

*81. The Binomial Formula for Fractional and Negative Exponents.

In case the exponent lo is not a, positive integer but is fractional or

negative, we may still write the expansion of (a+x)" by the formula of

§ 78, but it wiU now contain indefinitely many terms instead of coming

to an end at some definite point; that is, we meet with an infinite series.

(Compare § 41.)

For example,

(a+x)2=a^+^a2 a-l
—-

—

—a^ i^H —-—-

—

a^ * t

^ 1-2 1-2-3

= ai +-^o~^x—l-a"ix^+^a~i3?+•
Here we have written only the first four terms of the expansion, but

we could obtain the 5th term in the same way and as many others in

their order as might be desired.

82. Historical Note. The binomial formula for cases in which
the exponent m is a positive integer was known to the early Greek and
Arabic mathematicians, but its significance when n is fractional was
first pointed out by Sir Isaac Newton (1642-1727).

*83. Application. If in (o+x)" the value of x is small in comparison

to that of a (more exactly, if the niunerical value of x/a is less than 1)

then the first few terms of the expansion furnish a close approximation

to the value of (a+x)". This fact is often used to find approximate

values for the roots of numbers in the manner illustrated below.

Example. Find the approximate value of -x/lO.

Solution. Write \/Io= V9+l= '\/(32+ l) and expand this last

form by the binomial formula. Thus (using the final result in the

worked example of § 81), we have

V'l0 = (3Hl)* = (32)*+i(3')'^. l-i(3^)~^ • lHi^(32)"^ l'+--

^2-3 8-33^16-36^ '

= 3+ .166666- .004629+ .000257 = 3 ,162294 (approximately)

.
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Observe that the value of -v/lO as given in the tables is 3.16228,

thus agreeing with that just found so far as the first four places of

decimals are concerned.

Whenever extracting roots by this process we use the following

general rule.

Separate the given number into two parts, the first of which is the

nearest perfect power of the same degree as the required root, and expand

the result by the binomial theorem.

EXERCISES

Write the first four terms in the expansion of each of the following

expressions.

1. {a+z)i- 6. (2o+6)*-

2. {a+xr^- 6. (a^-x?)~^-

3. (1+x)*- 7. ^2+i.

4. (2-a;)~i- 8. -^^^+i.

9. Find by the formula in § 79 the 6th term in the expansion of

(a+x)i-

Find the

10. 6th term of {a+x)i- 13. 9th term of (o-x)-^.

11. 7th term of (a+a;)"*- I*- lOtli term oi^{x+y)3.

12. 8th term of (1+a;)^- 15. 6th term of \/2a+b.

Find the approximate values of the following to six decimal places

and compare your results for the first three examples with those given

in the tables.

16. Vrf. 17. ^27. 18. -^.

19. -s/li. 20. -^,
[Hint. Write 14 = 16 -2 = 2^ -2.]



CHAPTER X

FUNCTIONS

84. The Function Idea. In ordinary speech we make
such statements as the foUowing:

1. The area of a circle depends upon its radius.

2. The time it takes to go from one place to another de-

pends upon the distance between them.

3. The power which an engine can exert depends upon the

pressure per square inch of the steam in the boiler.

Another way of stating these facts is as follows:

1. The area of a circle is a function of its radius.

2. The time it takes to go from one place to another is a

function of the distance between them.

3. The power which an engine can exert is a function of

the pressure per square Lach of the steam in the boiler.

The idea thus conveyed by the word function is that we
have one magnitude whose value is determined as soon as we
know the value of some other one (or more) magnitudes upon
which the first one depends. This idea is at once seen to be

universal in everyday experience and for that reason it be-

comes of great importance in mathematics.f In the present

chapter we shall indicate briefly some of its most essential

features, noting especially the significance of the idea when
considered graphically.

85. Types of Algebraic Functions. An expression of the

form

(1) a^x+a,,

where the coefficients «„ and ai have any given values (except

that Oo must not be 0) is called a linear function of x.

fXhe extended formal study of the function idea enters into that
branch of mathematics known as the Calculus.

140
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Observe that every such expression depends for its value

upon the value assigned to x, and is determined as soon

as X is known. Hence it is a function of a; in the sense ex-

plained in § 84. It is called a linear function since it is of

the first degree in x. (Compare § 6.)

For example, 2x+3 is a linear function of x. Here we have the form

(1) in which ao = 2 and ai = 3. Similarly, 3x— 2, x—^, —x-\-\ and 3x

are Knear functions of x. (Why?)

Likewise, 3i+2 is a linear function of t, whUe —r+5 is a hnear

function of r, etc.

As an example of a linear function in everyday experience, suppose

that in Fig. 39 a person starts from the point P and moves to the right

at the rate of 15 miles per hour, and let Q be the point 10 miles to the

Q P

1^10-^
^ •

Fig. 39

left of P. Then we may say that the distance of the traveler from Q is

a linear function of the time he has been travehng, for if t represent

the number of hours he has been traveling, his distance from P is 15«

(see § 7, formula 4) and hence his distance from Q is 15<+10. This is

a linear function of t, being of the form (1) in which Oq = 15 and ai = 10.

Likewise, the interest which a given principal, P, will yield in one

year is a linear function of the rate, for, if r be the rate, the interest in

question is given by the formula PXr, or Pr, and this is seen to be ot

the form (1) in which a,) = P, and ai = 0, r being here the variable.

An expression of the form

(2) aox^+oix+oa,

where Oo, ai, and 02 have any given values (except that ao

must not be 0) is called a quadratic function of x.

For example, 2a?+3s— 1 is a quadratic function of x because it is

of the form (2) in which a^ = 2, ai = 3, 02=— 1- Likewise, 3?+^x;

a?+\; —7?+Zx; 5x^; x^ are quadratic functions of x.

Again, we may say that the area of a square is a quadratic function

of the length of one side, for if x be the length of side, the area is a?

and this is of the form (2) in which ao = l, 01 = 02 = 0.

Similarly, the area of a circle is a quadratic function of the radius r

since it is equal to irr^.
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An expression of the form

(3) aoX'+aiX^+OiX+aa,

where ao, ai, (h and as have any given values (except that oo

must not be 0) is called a cubic function of x.

For example, 3:i?-x^+\x-l; i3?-x; 3?-2ii?+l; 5a?; a?, etc.

Again, we may say that the volume of a cube is a cubic function of

the length of one edge. Also, the volume of a sphere is a cubic function

of the radius r, since it is equal to fi"?-'-

It may now be observed that the expressions (1), (2), and

(3) are but special forms of the more general expression

(4) aoX"+aiJC"-i+a2X"-2H \-an-iX+a„,

where it is understood that n can be any positive integer,

while the coefficients ao, ai, (h, •• a„ have any given values

(except that ao must not be 0). This is called the general

integral rational function of x, or more simply, a polynomial

in X. It reduces to the hnear function (1) when n=l; to

the quadratic function (2) when n = 2; etc.

In addition to these, expressions such as

VS, V^, -X^X, S-\/x+\/x, X^+4:X~^, -F7=
—-'

Vx—l
and others that involve powers and roots of x may occur in

the expression of functions in algebra.

EXERCISES

1. Show that the thickness of a book is a linear function of the

number of its pages.

[Hint. Let x be the number of pages, d be the thickness of each

page, and D the thickness of each cover. Now build up the formula

for the thickness of the book and note which of the functional types

in § 85 is present.]

2. The supply of gasoline in a tank was very low, its depth being

but 1 inch all over the bottom, when it was replenished from a pipe

which delivered 3 gallons per minute. Show that the amount in the

tank at any moment during the filling was a hnear function of the time

since the filling began.
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3. Show that the force which a steam engine has at any moment at

its cyhnder is a hnear function of the area of the piston; also that it is

a Unear function of the boiler pressure of the steam per square inch.

4. A certain room contains a, number of 16-candIe-power electric

lights and a number of Welsbach gas-burners. Show that the amount
of illumination at any time is a linear function of the number of electric

lights turned on. Is this true regardless of the number of gas-burners

already hghted?

5. Show that the perimeter of a square is a linear function of the

length of one side; also that the circumference of a circle is a linear

function of its radius.

6. Show that if each side of a square be increased by x, the corre-

sponding increase in the area will be a quadratic function of x.

[Hint. Let o = the length of one side of the original square. Then
the area is c? and the area of the new square is {a-\-x)^. Now formulate

the expression for the increase in area.]

7. Show that if the radius of a circle be increased by x, the corre-

sponding increase in area will be a quadratic function of x.

8. Show that if the edge of a cube be increased by x the corresponding

increase in volume will be a cubic function of x. State and prove the

corresponding statement for a sphere.

9. Show that if y varies directly as x (see § 48), then J/ is a linear

function of x. Is the converse of this statement necessarily true; namely,

if 2/ is a linear function of x, then y varies directly as x?

10. When y varies as the square of x, to which one of the functional

types mentioned in § 85 does y belong? Answer the same question

when y varies inversely as x; when y varies inversely as the square of x.

11. A certain Unear function of x takes the value 5 when x = l and

takes the value 8 when x = 2. Determine the form of the function.

Solution. Since the function is linear, it is of the form a^x+ai.

Since this expression must (by hypothesis) be equal to 5 when x = 1, we

have a,)- l+ai = 5. Likewise, placing x = 2, gives ao- 2 +0i = 8. Solving

these two equations for Oj and % we obtain a^ = Z, ai=2. The desired

function is therefore 3x+2. Ans.

12. A certain Unear function of x takes the value 14 when x = 3,

and takes the value —6 when x= — 1. Determine the function.

13. A certain quadratic function takes the value when x = l, and

the value 1 when x = 2, and the value 4 when x=3. Determine com-

pletely the form of the function,
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86. Functions Considered Graphically. By the graph of

a function is meant the line or curve which results when some

letter, as y, is placed equal to the func-

tion and the graph is drawn of the

equation thus obtained. The purpose

of the graph is to bring out clearly

and quickly to the eye the relation

between the given function and the

quantity (variable) upon which it de-

pends for its values.

The method of drawing such graphs

is precisely the same as that given in

§ 6 for equations of the first degree,

and in § 25, for quadratic equations.

Thus, in order to obtain the graph of the

function a?, we place y^a? and proceed to

assign various values to x and compute (from

this equation) the corresponding values of y,

then we plot each point thus obtained and

finally draw the smooth curve passing through

all such points.

Below is a table of several values of x ^°- 40

and y thus computed; and the graph is shown in Fig. 40.

\_
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1.6. The figure may be drawn by the student on a much larger scale;

the values of x and y can be read much more accurately from such a

figure than from Fig. 40.

Another means of improving the ac-

curacy of the figure is to take a longer dis-

tance on the horizontal hne to represent

one unit than is taken to represent one

unit on the vertical scale.
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The general form of the graph of a cubic function is that

of an indefinitely long smooth curve which cuts the x-axis

in no more than three points.

Fig. 43 shows the graph of the cubic

function oi?— 3x^—x+3. It cuts the x-axis

at three points whose abscissas are respec-

tively — 1, 1, and 3. These values, there-

fore, are the roots of the cubic equation

Similarly, the general form of the

graph of the rational integral func-

tion of the fourth degree is that of an

indefinitely long smooth curve which

cuts the a;-axis in no more than four

points. And it may be said hkewise

that the graph of the general integral

function of degree n (see (4), § 85) is

an indefinitely long smooth curve

which cuts the x-axis in no more
than n points.

T

-0

ll
Fig. 43

Fig. 44 shows, for example, the graph

of 2x*—5x^+5x— 2, this being a function

of the fourth degree. The four points

where the curve cuts the x-axis have
abscissas which are equal respectively to

— 1, -J, 1, and 2. These values, therefore,

are the roots of the equation 2x*— 5x'+
6x-2=0.

Fractional expressions give rise to more
complex graphs, which may have more
than one piece. Fig. 45 shows, for ex-

ample, the graph of 1/x. If we let y = l/x,

y varies inversely as x (§ 45). The curve

is therefore similar to that drawn in § 50,

Fig. 37. The graph consists of two
branches and belongs to the class of curves

known as hyperbolas. These we have
already met in § 28, Fig. 44
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EXERCISES

Draw the graphs of the following functions by plotting several

points on each and drawing the curve through them. Try to plot

enough points so that the form and location of the various waves, or

arches, of the curve will be brought out clearly, as in the figures of § 86.

Note how many times the curve

cuts the a;-axis and make such

inferences as you can regarding

the roots of the corresponding

equation.

[Hint. When the graph of a

quadratic function fails to out the

a;-axis, this indicates that the

roots of the corresponding quad-

ratic equation are imaginary.

(See §§ 26-27.) Similarly, when
the graph of a cubic function

cuts the X-axis in but one point,

this indicates that there is but

one real root to the correspond-

ing equation, the other two roots

being imaginary. In general, the

number of times the graph cuts

the s-axis indicates the number

llilli

Fig. 45

of real roots of the corresponding equation, the number of imaginary

roots being the degree of the equation minus the number of real

roots. 1

1. 3X-I-4. 2. X. 3. x^-x-2.

5. a^-l-1. 6. a^-3i2-x+3.

8. a;'-4x 9. a;*-16 10. Sx^-

4. x2-4.

7. 3?+33?+2x+6.

11. l/x^

87. The Derivative of a Function. An examination of the

curves shown in Figs. 42^5 shows at once that the steepness

of any one of them changes from point to poiat.

For example, in Fig. 42, which is the graph of the function

y =3p+x—2, if we select a point on the curve near to its lowest point,

the curve is almost horizontal there. At the lowest point itself, where

x=— 1/2, the curve becomes actually horizontal. But if we are at
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the point whose x is 2 or 3, the steepness is seen to be decidedly greater.

In fact, as x increases frona the value x= —1/2 the steepness also is seen

to increase, the curve becoming nearer and nearer vertical. The same

is true as x decreases steadily through negative values below —1/2.

We shall now show how to obtain an expression that will

measure the steepness of a graph at any given point upon it.

In Fig. 46, where the curve is the

same as in Fig. 42, suppose that P
is any given point upon the curve.

Draw the short Une PQ parallel to

the a;-axis, and at Q erect a perpen-

dicular meeting the curve at P'.

Then the value of the ratio

OP'

may be taken as a fairly good

measure of what we mean by the

steepness of the curve at P, for it

measures fairly well the ri&e QP' in

the curve at P as compared to the

small change PQ in the horizontal

position of the point.

Thus, the length of QP', as measured on the scale of the drawing,

is seen to be about 51 units, while that of PQ is about 1\ units. The
ratio (1) thus becomes 5J-^li, which reduces to 3f. The steepness at

P may therefore be taken as about 3|. If P be selected at a some higher

elevation on the curve and the corresponding lines PQ, QP' be

drawn and measured, the ratio (1) will be found to be greater than

3f, indicating that the curve is steeper at such a point than at the

point P of the drawing.

On the other hand, if P be selected at some elevation lower than

the one used in the drawing and the same process be carried out, it

will turn out that (1) has a value less than 3f, indicating less steep-

ness. Evidently, the steepness may be measured, at least roughly, at

any point in this manner. It is to be noted, however, that it is

essential to the method that PQ be taken small.

y
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Moreover, the smaller PQ be chosen (thus reducing also

the length of QP') the closer will the resulting ratio (1) tell

the exact status of the steepness at P- Hence, the limit (§ 42)

of (1) as PQ is taken closer and closer to zero may be regarded

as the exact measure of the steepness at P-

Let us now formulate these ideas algebraically. CalUng
X the abscissa of P and letting the small length PQ be repre-

sented by h, the abscissa of P' will be x+h. Since the curve

of Fig. 46 is the graph of the equation y= x^+x— 2 (see § 86),

it follows that the ordinate of P will have the value

(2) x^+x~2
while the ordinate of P' wiU have the value

(3) {x+hy+ix+h)-2.

Hence, the length of QP', which is the difference of the

ordinates of P' and P, will be

QP'={x+hy+(x+h)-2-(x^+x-2)
(4) =x^+2hx+h^+x+h-2-x^-x+2

= 2hx+h^+h.

Therefore the ratio (1), in the case before us, is given by

the formula

QP' 2hx-\-h?+h

^'\ -pQ=—ir-'
which reduces to

QP'
(6) ^ =2x+h+L

The limit of this ratio as PQ (or h) comes closer and closer

to zero is evidently 2x+l. Hence we arrive at the following

conclusion: If x be the abscissa of a point on the graph of the

function x'^+x—2 (Fig. 46), then the steepness of the curve at

that point is equal to 2x-\-l.

Thus, at the point for which x = l,the steepness is 2- 1+1, or 3;

at a; = 2, it is 2-2+1, or 5; at a; = 3, it is 2-3+1, or 7; at a;=0 it is 1,

etc. Note the meaning of these statements in Fig. 46.
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It is also to be noted that if x has a value greater than — 1/2

the value of 2x-\-\ is positive, which indicates that at such a

point the curve is ascending as x increases. This is illustrated

at the point P of Fig. 46. On the other hand, whenever x

has a value less than — 1/2, 2a;+ 1 is negative, indicating that

at a point corresponding to such a value of x the curve is

descending as x increases. That this should be so appears

directly upon choosing such a point (i.e. one for which x is

less than —1/2) and carrying through the steps of the

reasoning on page 149, noting that the expression on the right

in (4) will then be necessarily negative, whereas in the case

there discussed it was necessarily positive. The reasoning

for the new case should be carried through by the student at

this point.

Thus, the fact that when x= —3/2 we have 2x+l= — 2 indicates

that at the point whose x is—3/2 the steepness is —2 and that the

curve (Fig. 46) is descending as x increases. Compare with the situa-

tion at a; = 1/2.

Similarly, if we start with the function a;^— 3a;^—a;+3 and

consider its graph (Fig. 43) we may show by the same process

of reasoning that the expression, or formula, determining its

steepness from point to point is 3a;^— 6a;— 1.

In general, the same process enables us to find for any

given function a new function which determines for any

given X the steepnessf of the graph. This new fxmction is

called the derived function, or briefly, the derivative of

the given function.

tStudents familiar with trigonometry will note that what we have

defined as the steepness of a curve at a point P is equal to the tangent of the

angle between the tangent line at P and the positive x-axis. In fact,

the ratio (1) is seen to be equal to the tangent of the angle between PQ
and a straight line joining P to P' , and as PQ (and hence QP') become
smaller, this angle approaches as its limit the angle between the tangent

line at P and the positive x-axis. In higher mathematics the tangent

of this angle is called the slope of the tangent line at P.
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EXERCISES

1. Show (by means of the expression representing the derivative)

that the curve in Fig. 46 is twice as steep at the point where x = 5\ as

it is at the point where x = 2\.

2. Show (using the derivative expression) that the curve in Fig. 46

is three times as steep at the point where x= —3 as it is at the point

where x= — 1-g-. Interpret the geometric meaning of the negative signs

of the derivative met with in this example.

3. Prove the statement (see end of § 87) that the derivative of the

functional—3x^—x+3 is 3a;^— 6x— 1.

[Hint. Take any point P upon the graph shown in Fig. 43 and

proceed as in § 87, obtaining an expression analogous to (6) for the

ratio (1), and then noting its Kmit as h approaches zero. It will be

necessary first to work out the value for QP' analogous to (4).]

4. Using the expression for derivative given in Ex. 3, compare the

steepness of the curve in Fig. 43 at the points upon it at which x= — 3,

—2, —1, 0, 1, 2, 3. Interpret negative results geometrically.

5. Prove, following the method of § 87, that the steepness of the

graph of the function -fx— 5 is everywhere the same, and explain how
this result is illustrated in Fig. 38.

6. Find (as in § 87) the derivative of the function 2x'' —Sa'+Ss— 2.

(For the graph, see Fig. 44).

7. Find the coordinates of the point upon the graph of

2/=s^—4x+l

at which the ordinate is increasing twice as fast as the abscissa as one

passes along the curve from left to right.

8. Work Ex. 7 in case the ordinate is to be decreasiiig twice as

fast as the abscissa.

9. Find the coordinates of the points upon the graph of

y=^x^+^+x
at which the steepness is twice as great as at the origin. Draw a figure

to illustrate your results.

10. Determine the quadratic function of x whose graph passes

through the origin and the point (2, 1) and is twice as steep at the latter

point as at the former.
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88. Derivative of the General Polynomial. The deriva-

tives thus far considered have been of certain particular

functions forming special cases of the general polynomial

mentioned in § 85, that is, of functions of the type form

(1) aoa;''+aia;"~'+a2x"~^H \-an-iX+a„,

where n is a positive integer and ao, ai, ch, ••a„ are given

coefficients. Instead of working out the derivative of each

special function as required, it is preferable to work out once

for all the expression for the derivative of this general func-

tion (1). We shall then be able to write down the derivative

of any special function immediately, saving much labor.

Supposing the graph of (1) to have been drawn, select any

point P upon it and let its abscissa be x. Then, as in § 87,

let X increase by a slight amount, h. The ordinate of the first

point will have the length (compare (2), § 87)

(2) aox''+aix"~^+a2x'^^-\ \-an-iX+a„

while the ordinate corresponding to the point x+h will have

the length (compare (3), § 87)

{3)a^{x+hT+ai{x+hT-'+a2(x+hr-'+-+a,^,ix+h)+ar,.

We must now subtract expression (2) from expression (3)

(compare (4), § 87). In order to do this, it is desirable first

to expand the terms (x+Zi)", {x+h)''~^, (x+hY'^, etc., by the

binomial theorem (§ 78). After we have done so in (3) and

have subtracted (2) from the result, all the terms of (2)

cancel with like terms in the expanded form of (3), leaving

the following expression (compare (4), § 87):

/i{naoa;"-^+(n-l)aix"-'+(n-2)a2x''-'-F...+o„_i|

+— j n(n- l)aoa;"-'+ (n- 1) (n- 2)aia;"-'+ • •

I
(4) + . . .

+i:2l^f^"-'^^"-')-4"°-



X, § 88] FUNCTIONS 153

It only remains to divide this expression by h and deter-

mine the Umit approached by the quotient as h approaches

zero (compare (5) and (6), § 87). Evidently upon dividing

(4) by h we obtain

(5) naoa;''-'+(n-l)aia;"-2+(?i-2)a2a;"-'+...+a„_i+jB,

where R contains A as a factor and therefore approaches zero

as its Hmit, so that we reach the following theorem.

Theorem. The derivative of the polynomial

«oa!"+aia;"-i+a2x""2H |-a„-ia;+a„

is

waoa;"~*+(n- l)aix"-^+ (n- 2)a2a;"-'+ • • ^ +2a„_2a;+a„-i.

An examination of this result shows that the derivative of

any polynomial (1) may be immediately written down in

accordance with the following rule.

Rule fok Determining the Derivative of a Poly-

nomial. Multiply each term by the exponent of x in that term

and diminish the exponent of x by unity.

Thus the derivative of 2x^-3x^+5a;-l is 2-3a^-3-2a;+5, or

Gx^—Qx+5. Similarly, the derivative of x'^+3u?—x^+2x+3 is

ix^+9x^-2x+2.

EXERCISES

Obtain, by use of the Rule in § 88, the derivative of each of

the following functions.

1. a^-3a;+2. 6. x?+Zx'^-23?+43p-x+3.

2. 5a;+l. 6. x'^+xP.

3. 3?+3?+x+l. 7. 3a^™+2a;'"+l.

4. 33^—ia?+x. 8. x-P/^+SxP+xP-K

9. Prove that if any polynomial be multiplied by a constant, its

derivative will be multiplied by the same constant.

10. Prove that the derivative of any constant is equal to zero.

11. Show that the graph of ^x'^—^^^+^x^+x— l is twice as steep

when a; = 2 as when a; = 1.
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89. Maxima and Minima Points of the Graph of a Func-

tion. It was shown in § 87 that whenever a value of x renders

the derivative 'positive, the graph of the corresponding func-

tion, considered at the point having this value of x as its

abscissa, will be ascending as x increases. Similarly, it was

shown that if the derivative has a negative value, the graph

at the point in question will be descending as x increases. It

follows that if x be so chosen that the derivative is equal to

zero, thus being neither positive nor negative, then at the

corresponding point on the graph the curve will be neither

ascendiag nor descending; that is,

its direction will be horizontal. At
such a point (or points) the graph

may be either at a highest point or

a lowest point of one of its arches,

as illustrated at the points A, B, C,

D, E in Fig. 47. In the former

case; that is, at points such as A,

C, E, the graph is said to attain a

maximum, while in the latter case,

that is, at such points as B, D the

graph is said to attain a minimum.
Points such as A, C, E are called

maximum points of the graph, while

points such as B, D are its minimum points. The points

at which the derivative of a function equals zero are called

the critical points of its graph. A quadratic function has

one critical point, a cubic function has two such points, etc.

See Figs. 42, 43.

In summary, then, we have the following result: The
values of x at which the derivative of a function vanishes {equals

zero) are the abscissas of the critical points of its graph; the

function may be at a maximum or at a minimum at any one

of these points.

Fig. 47
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m

The value of this result in the graphical study of functions

is illustrated by the following example.

Example. Determine the critical points of the graph of the fimction

(1) 2/=il(a^+^-^+i)-

SoLTJnoN. The derivative of this func-

tion, as immediately written down by the

Rule of § 88, is

(2) ||(3x2+2a;-i)-

The values of x for which this expression

vanishes are the roots of the quadratic

equation 3a^+2x— 1-= 0, or, clearing of

fractions,

(3) 12:i^+8x-7 = 0.

Fig. 48

Solving the quadratic equation (3) by
any one of the usual methods, its roots are

found to be x=^ and x= — 1^-

Therefore, according to the result in

§ 89, we may say that the abscissas of the critical points of the graph

of (1) are x=^ and x= — l-j- To find the ordinates of the same points

we need only substitute these values of x in (1) to determine the cor-

responding values of y. Thus we find that when x = -j, y = and when
a;=-li, y = H-

The desired critical points of the graph of (1) are therefore the two

points whose coordinates are respectively (-j, 0) and (— l^^i If)- Note

how this fact is illustrated in Fig. 48, where the graph of (1) is shown.

The student should observe that as soon as the location

of the critical points of a graph are known, the essential char-

acter of the graph is determined and the curve can be at once

sketched with good approximation, thus avoiding the labo-

rious work of plotting a large number of points.

Thus, in the Example above, when once it was ascertained that the

critical points were located at i\, 0) and (
— 1|, If), the curve in Fig. 48

could be sketched, at least in its essential form and character. Added

accuracy in the drawing could then be obtained by plotting (as in § 25)

a few individual points, such as P, Q, R, S, and shaping the curve so

as to pass through them also.

In Fig. 48 the x-axis is a tangent line to the curve.
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EXERCISES

1. Prove (by the result in § 89) that the lowest point of the curve

in Fig. 42 has its abscissa equal to — 1/2. What, therefore, is its ordi-

nate?

2. Prove that the two critical points of the curve in Fig. 43 have

as their abscissas a; = l±f\/3) and find these values approximately

by use of the tables.

3. Sketch the graphs of each of the following functions by first

locating the critical points of each. (See the Example worked in § 89.)

(a) x^-x+l. (e) 3-2a;-x2.

(b) |x2-3x. CO ix3+3x2+8x+l.

(c) x2_8x+20. (?) x'-yx+e.

(d) x2-8x+16. (h) x^-6x2+llx-6.

90. Further Applications of the Derivative. Aside from

the applications which may be made of the devirative of a

function in drawing its graph, as described in § 89, there are

many other appHcations related at once to geometry, physics,

engineering, etc. This will be best imderstood from an
example.

Example. Of all rectangles having a perimeter of 10 inches, which
one has the greatest area? ^

Solution. Let x represent the length of any

rectangle having a perimeter of 10 inches. Then
the breadth will evidently be -^(10— 2x), or 5— x,

Perimeter ^lO

and hence the area will be the product x

(1) x(5-x), or5x-x2. ^'°- 49

As thus formulated, the area is clearly a function of x, and the

problem becomes that of determining the special value of x that wiU

give this function its greatest, or maximum, value. To determine this

value of X we now proceed as in § 89.

Finding (by the result in § 88) the derivative of (1) and placing it

equal to zero,- we have the equation 5—2x = 0, the solution of

which is X = 2-5-.

Therefore, by § 89, the area (1) will be a maxim\im when x=2-j

inches, which means (see Fig. 49) that the rectangle must be a square. Ans.

Note. That x = 2^ gives a maximum rather than a minimum
appears directly upon drawing the graph of (1).
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APPLIED PROBLEMS

In each of these exercises first formulate, as a function of some
suitable variable x, an expression for that which is to be made a maxi-

mum or a minimum. Proceed as in the solution of the Example in § 90.

1. Divide 15 into two parts such that their product is a maximum.

2. Divide h into two parts such that the sum of their squares is a

minimum.

3. Find the number that exceeds its square by the greatest possible

amount.

4. A garden plot is to be fenced off alongside of a house, using 32

feet of wire fence. What should be the dimensions used in order that

the enclosed area shall be the greatest possible.

6. It is desired to make an open-top box of

greatest possible volume from a square piece of tin

whose side is a by cutting equal small squares out

of each corner and then folding up the tin to

form the sides. What should be the length of a

side of the squares cut out?

6. A rectangular piece of ground is to be fenced

off and divided into three equal parts by fences parallel to one of

the sides. What should the dimensions be in order that as much

ground as possible may be enclosed with 160 rods of fence?

7. The strength of a beam having a rectangular cross section varies

jointly as its breadth and the square of its depth. What are the dimen-

sions of the strongest beam that can be sawed out of a round log whose

diameter is 14 inches?

8. Show that the altitude of the cone of maximum volimie that

can be inscribed in a sphere of radius r is ^r.

[Hint. Volume of cone =-j X area of base X aZit-

tude = lTrA^x. But, DAB being a right angled

triangle, we have

AC'^=BCXCD=x{2r-x).

Therefore, the volume of the inscribed cone, expressed

as a function of its altitude x, is

Fig. 50

^i2r- X)..
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9. Prove that a window of the shape here shown (Norman window)

and having a given perimeter, p, will admit the most light when the

height of its rectangular base equals the radius of its

semicircular top.

that

Fig. 52

the altitude of the cylinder of

maximum volume that can be in-

scribed in a given right cone is

equal to one-third the altitude of

the cone.

[Hint. Determine DG in terms of x, h and r

by making use of the fact that the triangles B6D
and BCA are similar. Then express the volume of

the cylinder by formula 9, § 7, and find the value

of X for which it is a maximum.]

91. The Further Study of Functions. The studies of the

present chapter have been confined for the most part to

functions of the simplest type, namely, the type of the general

rational integral function (4) of § 85. It should be under-

stood, however, that the method explained in § 87 for finding

the derivative may be applied to other extended classes of

functions also, leading to results which are interesting

graphically and of great importance in their applications.

For example, one may consider in this way such functions as

the following: 1/(1— x), s/x, W, log x, or in fact, any

expression containing the variable x. The extended study

of this subject belongs to the branch of mathematics known
as the Calculus.



CHAPTER XI

THE THEORY OF EQUATIONS

92. Introduction. In Chapter IX it was pointed out that

if one draws the graph of any polynomial of x, that is, of any

function of the type form

(1) aox"+aix''-^+a^x''-^-\ \-a^iX+a„,

where n is a positive integer, the abscissas of the points where

the graph cuts the a;-axis will be the roots (or solutions) of

the corresponding equation, namely of the equation

(2) a,x''+aix"-'+a^x^-^+-+a„_,x+a^= 0.

For example, Fig. 43 (page 146) which is the graph of the function

x'— 3x^—x+3, brings out the fact that the roots of the equation

x'-3x2-a;+3=0are -1, lands.

This graphical method of determining the roots of an

equation cannot ordinarily be relied upon, however, when it

is desired to determine the roots accurately, since measure-

ments on any drawing, however perfect, are subject to certain

inaccuracies of instruments and of eyesight. If the roots are

to be determined exactly, or at least to any desired degree of

accuracy, it is necessary to employ certain special theorems

and processes of algebra. These will be considered in the

present chapter, together with certain other facts of general

interest regarding equations of higher degree than the second.

We shall assume throughout that every equation (1) of

the nth degree has n roots, and no more, as was indicated in

§ 86t. In saying this, it is to be understood that both real

and imaginary roots are being counted; also that double roots,

though equal, are counted as two, triple roots as three, etc.

Compare § 22.

tThis fact may be actually proved, but the proof lies beyond the

scope of the present book.

159
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I. Preliminary Theorems

93. The Remainder Theorem. For convenience, let us

represent the general polynomial with which we are to deal

by the symbol f{x), called "function of x" or more briefly

"/ of X." That is, let us place

f{xy-=aox''+aix''~^+a2x''~^-\ han-i^J+an-

We may then state the following theorem regarding f{x),

it being understood that the letter r used below represents

any given number.

Remainder Theorem. // f{x) is divided by x—r, the

remainder is f(r), where f(r) indicates the value of f(x) when r

is substituted for x.

For example, if 2x'—a^+2x— 1 (which is a special/ {x)) be divided

in the usual manner by s— 1, the quotient will be found to be 2x^+1+3
with a remainder of 2, that is, we have

2x3-x2+2x-l , , 2
-^ = (2x2+x+3)+ -•

x—l x—1
The above theorem says that this remainder, 2, is the same as the

result obtained by placing s = l in 2^^—x^+2x— 1, that is, the same as

2- 1^ — 12+2- 1 — 1. The correctness of the statement may be verified

immediately.

The student is advised to check the theorem at once in several other

similar instances, such as in dividing 3x'—2x^+x+l by x — 2, or

x*+3i?—2r^+x— l by x+2. In the latter case, r=—2.

Proof of the Remainder Theorem. We have

f(x)=aox''+aix'^~^-\ \-an-j^x+a„

and

fir) = aor"+air"-^+ . +a„_,r+a„.

Hence

(1) f(x)-f{r)=a,ix''-rn+a:(x^-'-r^-')+ ...+a„_,(x-r).

Since each of the expressions (x"— r"), (x""'— r""^), •••

(x-r) is exactly divisible by (x-r) (see Ex. 8, page 132), it

follows that the entire rignt hand side of (1) is exactly divis-
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ible by {x— r). For brevity, let us indicate the quotient thus

obtained by Q(x). We then have

ro\
/(x) -/(r)

(2) = Q{x),
x—r

where (since the division is exact) Q{x) is itself a polynomial,

but of degree one less than that of J{x), that is, n—\.
Biit the relation (2) may be written in the form

/W „, . , /«= Q(a;)H
x—r x—r

which states, as desired, that fir) is the remainder obtained

when/(a;) is divided by x—r.

EXERCISES

In the following exercises, obtain the answer by means of the

remainder theorem, checking its correctness in the first three exercises

by long division as in elementary algebra.

Find the remainder when

1. Sx'+x^—4s+l is divided by x— 2.

2. Sx'+x^— 4i+ l is divided by x+2.

3. a^+x^ -2x2+3 is divided by x+1.

4. x^-3x2+2 is divided by x-3.

5. ox^+bx+c is divided by x—h.

6. Prove, by the remainder theorem, that when 2x*— llx'+lSx^-

Sx— 4 is divided by x—4 the division is exact; that is, the remainder is

zero.

7. Prove, by the remainder theorem, that

(o) x"— a" is exactly divisible by x—a for any positive, integral

value of n.

(b) x^+a" is exactly divisible by x+a in case n is any odd integer.

Test also the truth of the statement in case n is any even integer.

94. Sjmthetic Division. If it is desired in one of the cases

of division considered in § 93 to find not merely the value of

the remainder, but also the form of the quotient, the labor

of doing so may be very much simplified by following an

abridged method known as synthetic division.
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Suppose, for example, that it is desired to divide the

expression 2x'— a;^+2a;+l by x— 1. By the ordinary long

division method, the process would be as follows

:

2x^- a:^+2x+l |a:-l

2a;^-2a;^ 2x^+x+3 = Quotient

x^+2x

Sx+l
3a;-

3

+4 = Remainder.

As a first step at simplification, we may evidently concern

ourselves only with the coefficients, since, if we knew the

coefficients of the quotient to be 2, +1, 3 we could at once

supply the needed powers of x, obtaining 2a;^+x+3. This

reduces the process to the following form:

2-1+2+ l |l - 1

2-2 2+1+3
+ 1 + 2

1-1
+ 3 + 1

3-3
+ 4 = Remainder

The numbers in bold type are the same as the coefficients

of the quotient, hence the latter may be dispensed with.

Moreover, the +2 in the third line of the process and the +1
in the fifth line are mere repetitions of the numbers directly

above them in the dividend, hence they may likewise be

dispensed with, as also the 2, 1, 3 which appear directly

beneath the bold-faced numbers, being mere repetitions of

the latter. Thus the process in its essentials is as shown below.

2- l + 2+l |l - 1

-2-1-3
+1+3+4
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But, inasmuch as the divisors which we are considering

(see § 93) are always of the simple form x— r, the coefficient

of X in the divisor is always 1. Hence, in the above process,

this ' 1 may be suppressed, thus replacing
|

1 —

1

by
I

— 1

;

and the work may be written as follows.

2-l+2+l|-l
-2-1-3

+1+3+4
Finally, in order to reduce the process to the easiest form

for work, we may replace the
|

—

1

by
|

+1 and add through-

out the resulting process instead of subtracting, as follows.

2-1+2+1 1_+1

+2+1+3
2+1+3+4

Thus, the quotient is read off as 2x^+x+S and the re-

mainder as 4. Similarly, we have the following rule.

Rule fob Synthetic Division. To divide f(x) by x—r
arrange f{x) in descending powers of x, supplying all missing

powers by using zeros as their coefficients.

Detach the coefficients, writing them horizontally in the order

Oo, 0,1, 02, •, ct„_i, a„.

Bring down the first coefficient Oo, multiply it by r and add

the result to ai; multiply this sum by r and add the result to Oi.

Continue this process. The last sum will be the remainder and

the preceding sums in their order from left to right will be the

coefficients of the various powers of x, arranged in descending

order, of the quotient.

Thus, in dividing x^—73?—5 by x— 3, we first write x^—7x^—5 in

the form x^+O-x'—Tx^+O-x— 5. The work of division is then as

follows.
1+0-7+0- 5[3

+3+9+6+18
1+3+2+6+13

Hence, the quotient is x^+3x^+2x+6, and the remainder is 13.
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EXERCISES

In each of the following exercises, find the value of the quotient and
remainder by synthetic division.

1. x'— 4a;^+3a;— 1 divided by x— 2.

2. x= -4a;2 4-33; -1 divided by X +2.

3. 3xHx+l divided by x+1.

4. xHx^-3x^-17x-30 divided by x+2.

5. ax^+6x+c divided by x—h.

95. Solutions by Trial, Depressed Equations. The results

indicated in §§ 93, 94 afford a rapid way of determining

whether a given number is a root of any given equation f(x)

= 0.

Example 1. Determine whether 6 is a root of the equation

2x<-3x^-50x=-27x+ 10 = 0.

Solution. The result of placing x = 6 in the first member is (by

§ 93) equal to the remainder obtained by dividing it by x— 6, and this

remainder, as indicated by the work below, turns out to be +64:

2- 3-50-27+ 10|_6

+12+54+24-18
2+ 9+ 4- 3- 8

Thus, when x = 6 the first member of the given equation is not zero

(as the equation requires), but —8. We therefore conclude that 6 is

not a root.

Example 2. Determine whether 4 is a root of the equation

x^-x^-llx-4 = 0.

Solution. The work in brief is as follows:

l-l-ll-4[4
+4+12+4
1+3+ 1+0

The remainder being zero, it follows that 4 is a root.

The solution of Example 2 indicates not only that 4 is a
root of the given equation

(1) x^-x'-llx-i^O,

but also that the quotient obtained by dividing the first
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member by a;— 4 is x^+Sx+1. Hence, (1) may be written

in the form

(x-4:)ix^+3x+l)=0,

from which it follows (§ 16) that, aside from the root 4

already obtained, the remaining roots of (1) are those of the

simpler equation

x^+dx+l = 0.

Wheiiever a new equation is thus obtained from an original

one through a knowledge of one of its roots, the new equation

(whose degree is one lower than the original) is known as the

depressed equation corresponding to that root. Evidently,

whenever a depressed equation can be substituted in this

way for an original, the process of determining solutions by
trial becomes simplified, and in some cases it leads directly

to a determination of all the roots of the original equation,

as illustrated in the following example.

Example 3. Obtain, by the method of trial and the use of depressed

equations, such information as is available concerning the integral

roots of the equation

(2) X*- 2x5- 20x2-21x- 18= 0.

Solution. Upon performing the tests such as indicated in Examples

1 and 2, with x = l, 2, 3, 4, 5, 6, we find that the remainder in each case

is not zero, except for x = 6, the work for this case appearing below.

1-2-20-21-18 [6

+6+24+24+18
1+4+ 4+ 3+

The depressed equation corresponding to the root 6 is therefore

x2+4x2+4x+3=0.

Testing this equation for x = 1, 2, 3, etc., we find that the remainders

steadily increase. This indicates that the equation has no positive

integral root. We proceed, therefore, to test for the negative integers

—1, —2, —3, etc. It thus appears that —3 gives a zero remainder,

as shown below.
1+4+4+31-3
-3-3-3

1+1+1+0
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The corresponding depressed equation is x^+x+ l=0, and this,

being a quadratic equation, may be solved by formula (§ 21). Its roots

are thus found to be -j(—1±\/— 3). They are therefore imaginary

(§ 10). In siunmary, therefore, equation (2) has the two real roots

6,-3 and the two imaginary roots -^C
—1±V— 3).

EXERCISES

Obtain, by the methods of § 95, such information as is available

regarding the integral roots of each of the following equations. If a

depressed equation of the second degree is finally obtained, solve it, as in

Example 3, § 95, thus obtaining all the roots of the given equation.

1. 2x'+3x2-llx-6 = 0. 4. x*+225-3x2-8a;-4 = 0.

2. 2x'-5x2-llx-4 = 0. 6. 3x*-21x'+22x2+37x+15 = 0.

3. a?-x2-19s-5 = 0. 6. x^-4i?+llx-^ = 0.

7. If r is a root of the cubic equation a:i?-\-h3?-\-cx-\-d = Q, determine

the corresponding depressed equation.

96. Transformations of Equations. The determination of

tiie roots of a given equation is frequently facilitated by
transferring its study to that of a related, or transformed

equation. In this coimection, the theorems stated below are

especially important, as wiU be seen in §§ 98, 99.

Theohem 1. Having given an equation of the form

(1) aox''+aix''-'^+a2X^-^-\ \-a„-iX+a^= 0,

one may obtain an equation each of whose roots is m times the

corresponding root of (1) as follows. Multiply the successive

coefficients of (1), beginning with that of x'^~^, by m, m^, m',---

respectively; in other words, build up the following new (trans-

formed) equation:

(2) aoa;"+maia;;?-i+m2a2a;"-'+ • •+m"-ia„_ia;+mX = 0.

Thus, whatever the roots of the equation 3a;'—2z^H-x— 4 = may
be, the roots of the equation 3x'-2-2x2+22x-2'-4 = 0, or 3x'-4x^+
4x — 32 = 0, are twice as great.

The transformed equation (2) may be obtained at once
from (1) by multiplying the respective terms of (1), beginning
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with the term aix"-\ by m, rn?, m', • • m". It should be noted,

however, that in applying this process to a given equation

(1), all missing terms are to be supplied with zero coefficients.

Thus, in order to obtain the equation whose roots are three times

the roots of the equation s*— 2s^+a;— 1=0, one proceeds as follows.

Supplying the missing coefficient, we may write the given equation in

the form x*+0-a^-2x2+x-l =0. Hence, by Theorem 1, the desired

equation is a;H3-0-a^-2-3V+35-a;-3* = 0, which reduces to

a;*-18a;2+27x-81=0. Am.

Proof of Theorem 1. What we are to prove may be
stated as follows. If r be any root of (2), then the quantity

s= r/m will be a root of (1). This, in fact, means that any
root of (2) is m times a corresponding root of (1).

Since r is a root of (2) we have

(3) Oor^+mair^-i+m^aj/'-^H f-m''-'a„_i?-+m"a„ = 0.

Substituting for r its value ms and dividing the resulting

equation through by m", (3) becomes

aos"+ais""'+a2s''-2H |-a„-iS+a„= 0,

which states, as desired, that s is a root of (1).

Corollary. To obtain an equation each of whose roots is

equal numerically to a root of a given equation (1), hut opposite

in sign, change the signs of the coefficients of the terms of odd
degree.

Thus, the equation whose roots are equal numerically but opposite

in sign to the roots of 2x^+3x'-x2-4x+l =0 is 2x^-3a^ -ii?+4x+l =0.

Theorem II. Having given an equation of the form

(1) aoa;'*+aix""^+a2x"~^H !-an-ia;+a„ = 0,

one may obtain an equation each of whose roots is less by a given

amount h than the corresponding root of (1) as follows. Divide

(1) by x—h and indicate the remainder by R^, then divide the

quotient by x— h and indicate the remainder by Rn-i- Continue

this process n times, obtaining Oo as the last quotient and Ri as

a last remainder. Then, the desired (transformed) equation is



4-
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of (4) (or(l)) by x— /i that is, A„= i2„. Similarly, An-i is

evidently the remainder obtained when the quotient of the

last-named division is divided by x— h. Continuing this

process to n divisions, Ai is the last remainder and Oo the last

quotient. Hence, in summary, we have, as required,

An — lint An-i = Hn-li ' "

' -^1 — Rl-

EXERCISES

1. By use of Theorem 1, obtain the equation whose roots are 3 times

the roots of the equation 3a:?— 10a;-|-3 = 0, and verify the correctness of

your restilt by solving both equations and examining the comparative

sizes of their roots.

2. Obtain equations whose roots are equal to those of the following

equations multipUed by the number opposite.

(a) a?-6:c2+a:-l = 0. (3) (c) rE^-7+:^-:^=0. (4)
4 16 16

(6) x*-3a?+i+2=0. (-2) (d) 2x^-3x^+5 = 0. (-3)

3. Obtain equations whose roots are equal to those of the following

equations multiphed by the smallest number which will make all the

coefficients integers and also make the coefficient of the highest power

equal to unity.

(a) 32^-2x2+x-l=0.
[Hint. As the problem requires that the coefficient of the highest

power of X be 1, begin by dividing the equation through by 3, thus

giving it the form x'—|x^+^x—^ = 0. Now write the equation whose

roots are m times the roots of this, and then assign to m the least value

necessary to make the new coefficients all integers.]

(6) 2x*-5x'+3x2-2x-4 = 0. (d) 3xH3x2-5=0.

(c) i?-i^+i- = 0. (e) 2x^-4x2+1=0.

4. Obtain the equations whose roots are numerically equal but of

opposite sign to the roots of the equations in Exs. 2-3.

6. Obtain (using Theorem 2) equations whose roots are the roots

of the following equations diminished hy the number opposite.

(a) x'-12x2+47x-60 = 0. (3) (d) 2x^-3x2+4i-5 = 0. (-2)

(6) 2x3 -19x2+59x -60 = 0. (2) («) xH9x3+18 = 0. (-5)

(c) 2x^-3x2+4x-5 = 0. (2) (/) x5+3x+l=0. (1)
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97. Theorem Regarding Rational Roots. Another general

theorem which it is desirable to state before attempting to

solve any equation of higher degree than the second (as we
shall show how to do in §§ 98, 99) is as follows.

Theobem. An equation of the form

(1) a;"+pia;"-'+P2a;"-='+ • • +Pn-iX+Pn= 0,

wherein the coefficients pi, p^, •••, p„ are all integers, can have no

rational roots except integers (positive or negative).

Moreover, any integer that is a root will be an exact divisor

of the last (constant) term, p„.

Thus, in the equation

the coefficient of the highest power of x is 1, and all the remaining

coefficients are integers. Hence, the only possible rational roots are

the exact divisors of the last term, 4; namely 1, 2, 4, —1, —2, and —4.

Whether any one (or more) of these is a root can be determined by the

methods explained in § 95. It thus appears that none of the six values

just mentioned is a root except —1. The fact that —lis a root appears

from the work below.

1-1+2+4 [-1
-1+2-4
1-2+4+0

Note. It will be recalled that rational numbers comprise all num-
bers of the form a/6, where a and 6 are integers (positive or negative).

They therefore include such fractions as -j, f, f , —f etc., and all integers.

This is in contrast to such numbers as •\/2, -y/s, '^2 etc., which cannot

be so expressed, and are therefore called irrational. The roots of an
equation may be all rational, all irrational, or partly one and partly

the other. Also, some or all may be imaginary. Compare § 22.

Proof of Theorem. Suppose that (1) had a rational root

that was not an integer. Then this root could be expressed

as a fraction in its lowest terms, a/b, where a and b are integers,

and we would have



XI, § 97] THE THEORY OF EQUATIONS 171

Multiplying (2) through by &"~\ we obtain

or

^=-(pia"-i+p2a"-=6+...+p„_ia6"-^+p„6"-i).

Since a and b as weU as pi, p^, ,Pn are integers, the right

member of the last equation likewise must be an integer.

The left side, however, cannot be an integer since, if a/b is a

fraction in its lowest terms as we have supposed, it follows

from arithmetic that a"/6 will be again a fraction in its lowest

terms.

Thus, we reach an absurdity upon the assumption that

a/b is a root. This leaves only integers as possible rational

roots, as was to be shown.

To prove the last part of the theorem, suppose that r is a

root where r is an integer. Then

r"+pxr^-'+P2r''-'+ +p„-^r+p^ = 0.

Transposing p„ and dividing through by r, we obtain

r--'+p,r''-'+p,T^-'+ . .
. +p„_i= -^.

r

The left member of this equation is an integer since each

term in it is an integer. Hence the quotient p„/r on the right

must also be an integer, that is, p„ must be exactly divisible

by r, as was to be shown.

EXERCISES

State all the possible rational roots of each of the following equations,

and for each possibility determine, by the method of § 95, whether it

is a root.

1. 3?-4x'-x+ 10 = Q. 4. 2!*-15x2-7x+12 = 0.

2. x' +5x2-2x- 10 = 0. 5 xH7a?-x+18 = 0.

3. x^ -5x3 +4x2-X+27 = 0. 6. s?-4:^+x-2 = 0.
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II. Determining the Real Roots of Any Equation

98. Rational Roots. We have seen how the theorem of

§ 97 affords a means of determining the rational roots of an

equation provided the equation has the coefficient of its

highest power of x equal to 1 and the remaining coefficients

are integers. We shall now illustrate how the rational roots

of any equation may be obtained, provided only that the

coefficients are rational numbers.

Example. Find the rational roots of the equation

(1) 3x3+16a;2-3a;-6= 0.

Solution. Since the coefficient of the highest power of x

is not 1, the theorem of § 97 cannot be applied, hence we
proceed as follows. First make the coefficient of x* equal to

1 by dividing through by 3:

a;'+—a;2-a;-2 = 0.

Now transform this (by Theorem I, § 96) into an equation

whose roots are 3 times as large:

16

or, reducing,

(2) a;5+ 16x2-9x- 54 = 0.

The theorem of § 97 now applies to (2), indicating that

its only possible rational roots are the integers ±1, ±2, d=3,

=fc6, ±9, ±18, ±27, ±54. Of these, the method of § 95

shows that +2 is the only value satisfying (2). The work
for this case appears below.

1+16- 9-54^
+ 2+36+54

1+18+27+0



XI, § 98] THE THEORY OF EQUATIONS 173

The corresponding depressed equation is seen to be

a;2+18x+27= 0,

and, as the roots of this quadratic equation are at once found

to be irrational (see § 22), it follows that the only rational

root of (2) is 2.

Therefore, recalling that each root of (2) is three times

the corresponding root of (1), it follows that (1) has but one

rational root whose value is one-third of 2, or 2/3.

Similarly, the rational roots of any equation

/(^)=0

whose coefficients are themselves rational numbers may be

found by the following rule:

Rule for Deteemining Rational Roots. Divide both

members of the equation by the coefficient of the highest power

of X, thus obtaining 1 as its new coeffixdent.

Transform this equation into one whose roots are m times

as large, choosing m in such a way that the coefficients of the

new equation will all be integers.

Determine the integral solutions of the last equation by trial,

using the theorem of § 97, and divide each root thus obtained by m.

EXERCISES

Find the rational roots and if possible all the roots of each of the

following equations.

1. 3a^+2a;2_4^^.1=0.

2. 2:i?-i^-7x+6 = 0.

3. 2a^-3a?-20x2+27x+18 = 0.

4. 2a^-92^-27x2+134x-120 = 0.

5. 24a?-34a^-6x+3 = 0.

6. 18a?+3x2-7a:-2 = 0.

7. 9s'-27a;2+23x-5 = 0.

8. 23?-nx^+8x+7 = 0.

9. 72xH90x'-5x2-40x-12 = 0.
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99. Irrational Roots.

the given equation is

Homer's Method. Suppose that

(1) f{x) = x^+3x'-10x-6 = 0.

Ih this case the only possible rational roots, as indicated by

§ 97, are ±1, ±2, ±3 and ±6, but none of these, when
tested as in § 95, satisfies the equation. Hence, any real

roots that can be present must be irrational. If such roots

are to be determined correct to any given place of decimals,

it is best to begin by sketching the graph of the given func-

tion, a;^+3x^— lOx— 6, thus obtaining an approximate value

for each of the roots by inspection, as in § 86.

The graph may be drawn readily as follows. If we place

y= :i^+3x^— 10x— d, the value of y when x = 3, for example,

will be the remainder obtained by dividing x^+3x^— 10x— 6

by x— 3 (see § 93). This remainder may be calculated

rapidly by synthetic division, as below.

1+3-10- 6[3
+3+18+24
1+6+ 8+18

Hence, when a; = 3, ?/= +18. Similarly, the value of y corre-

sponding to any given value of x may be found. The graph

is as indicated in Fig. 54, where, for the

convenience of the drawing, each space

along the y-axis is counted as 5 units.

Three real roots are thus seen to be

present. In particular, one root Ues be-

tween 2 and 3 and we shall now proceed

to determine with accuracy this partic-

ular root, following the process known as

Horner's Method. The other two roots

could be determined similarly if dfesired, as wiU be shown
later



XI, § 99] THE THEORY OF EQUATIONS 175

Since the root in question lies between 2 and 3, we first

transform the equation into one whose roots are each less

by 2 than those of the original equation, using for this pur-

pose Theorem II of § 96. The work appears below.

1+3
+2
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Recalling that the roots di (1) are 2 greater than those of

(2), we see, in turn, that (1) must have a root between 2.3

and 2.4, so that the root of (1) in which we are interested,

when computed correct to one place of decimals, is 2.3 We
proceed now to get this root correct to two places of decimals,

and finally to three, the process admitting of indefinite con-

tinuation, so that the root in question may be determined as

accurately as one desires. Less labor, is required to deter-

mine the digits of the decimal beyond the one in tenth's place.

Transforming (2) into an equation whose roots are .3 less,

1 +9.0 +14.00 -6.000 [^
0.3 + 2.79 +5.037

+9.3 +16.79

+0.3 + 2.88

-0.963

+9.6

+0.3

+19.67

1 +9.9

we find the second transformed equation to be

(3) a;'+9.9a;2+19.67a;-0.963 = 0.

Since the root, x, of (2) in which we are interested Hes be-

tween .3 and .4, and each root of (3) is .3 less than the corre-

sponding root of (2), the root of (3) which we are to determine

lies between and .1 Hence it is relatively small. In fact, it

is so small that we may, with reasonable safety, drop off the

terms of (3) which contain higher powers of x than the first,

since they are very small in comparison to x itseff. The
equation then reduces (3) to the simple form

(4) 19.67a; -0.963 = 0,

whose solution is evidently 0.963 -i- 19.67, or, approximately,

.04+ Hence, although the root of (3) which we are seeking is

not exactly equal to the solution of (4), its value, when com-
puted merely to the first significant figure, may safely be

taken as .04
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Note l. In order to remove all existing doubt at this point, one
may determine (by the usual synthetic process) the values of the first

member of (3) when x = .04 and a; = .05 respectively. If the results are

of opposite sign, no mistake has been made in taking .04 as the root

desired (correct to the first significant figure) of (3), but if the results

are of the same sign, the root can evidently not lie between .04 and .05

One should in such cases proceed to find also the results for .03 and
.06 to ascertain between what two consecutive hundredths the change

of sign in the left member of (3) does occur. It is usually desirable to

check in this way the value which has been determined as a probable

value of the root, especially if it is greater than .05, but it is usually

not necessary to check the similar tentative roots obtained from time

to time in continuing the process which follows below.

It follows that the root of (2) in which we are interested,

correct to two decimal places, is .34; hence the desired root of

(1) to a similar degree of accuracy is a; = 2.34

In order to determine the next figure of the root, we now
proceed as before, that is, we first transform (3) into an equa-

tion whose roots are less by .04 The work appears below.

1+ 9.90 +19.6700 -0.963000 1 .04

+ .04 + .3976 +0.802704

1+ 9.94 +20.0676

+ .04 + .3992

-0.160296

1+ 9.98

+ .04

+20.4668

1+10.02

Thus the third transformed equation is therefore

(5) a;'+10.02a;2+20.4668x-0.160296= 0,

and its root in which we are interested must He between

and .01 To obtain it to the first significant figure, we solve

the equation

(6) 20.4668a;-0.160296 =

thus obtaining a; =.007+ Hence the root of (1), correct to
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three decimal places, is x = 2.347 Evidently the process may
now be continued indefinitely, thus determining the root m
question to any desired degree of accuracy. It is to be noted

finally that the preceding work may be conveniently and

compactly arranged as follows.

1+3 -10 -6 [2

+2 +10 +0
1+5 +
+2 +14
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4. Locate this root correct to its first significant figure by
Horner's Method of approximation (subject to the remarks in
Note 1 above) and obtain a new equation whose roots are kss
than those of the last one by the smaller of the hundredths thus

determined. This equation will have the root in question lying

between and 0.01

5. Continue the process to any required number of decimal

places.

6. The sum of all the diminutions of the roots gives the value

of the required root correct to the last decimal place appearing in

the process.

In order to determine a negative irrational root of an equa-
tion /(a;) = 0, we have merely to determine the corresponding

positive root of the equation /(—a;)=0. See corollary, § 96.

Note 2. It may happen that two (or more) roots of a given equa-
tion are so nearly equal that it is difficult to distinguish between them
on the graph and hence difficult to obtain for each a first approximation
that will be different in the two cases. Under such circumstances, it is

necessary to begin by determining each by trial cor-

rect to the first place of decimals rather than merely

to the first integer. For example, the equation

fix) =4x^-24a;2+44a;-23 =
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EXERCISES

Determine each of the following roots correct to three decimal

places, accompanying each equation with its graph.

1. The root of a^—3x^+6x— 9 = lying between 2 and 3.

2. The root of s^—3x^—3x— 7 = lying between 4 and 5.

3. The root of x^+13a^+57x-16 = lying between and 1.

4. The root of a^+6x^+9x+l =0 lying between —3 and —4.

5. The root of x'^+ici? -4x^-12x+3 =0 that lies between 1 and 2.

6. Determine, correct to two decimal places, the roots of the equa-

tion x*-6x'+5x2+14x-4 = between 3 and 4. See Note 2, § 99.

7. Determine, by use of Horner's Method, the value of the fourth

root of 1296 correct to four places of decimals. Note that this is equiva-

lent to solving the equation x^ = 1296.

8. Determine, correct to three decimal places, the fifth root of 100.

9. Obtain, correct to two decimal places, the positive solutions

X, y of the following simultaneous quadratic equations (compare

§§29, 30) xy = l,y = x^-2.

10. The edge of a cube measures 3 inches. By how much, correct

to two decimal places, should each edge be increased in order that the

volume may be increased by 50 cubic inches?

11. The dimensions of a rectangular box are 8 by 10 by 12 inches.

By what amount, correct to three decimal places, should each be in-

creased in order that the volume may be increased by 400 cubic inches?

12. How long is the edge of a cube if, after cutting off a slice 3

inches thick from one side, there remain 20 cubic inches?

13. A right circular cylinder has its upper base

hollowed out into the form of a hemisphere. In

order that the soUd thus formed may have the

same volume as a sphere 4 feet in diameter, de-

termine, correct to three decimal places, what
must be the radius of its base?

[Hint. See formulas in § 7.]

14. Answer Ex. 13 in case both bases of the cyhnder are hollowed

out in the manner indicated.

16. The depth of flotation in water of a material sphere is the posi-

tive root of the equation x' — 3?'x^-|-4A = 0, where r is the radius and
s is the specific gravity of the material. Find, correct to two decimal

places, the depth at which a cork sphere of radius 1 foot will sink, it

being given that the specific gravity of cork is 0.24
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100. Algebraic Solutions. It has been shown in an earher

chapter that if one considers the general quadratic equation,

namely

(1) ax'+bx+c^O,

it is possible to determine formulas for its two roots, thus
expressing them in all cases in terms of the coefficients a, b, c.

In fact, it was shown in § 21 that the roots of (1) are

(2) -b± Vy-4ac
^

2a

Similarly, one may now inquire whether formulas exist

which express the three roots of the general cubic, namely,

the three roots of the equation

(3) a3^+bx^+cx+d= 0.

Such formulas exist, but they are difficult to use, and are

of theoretic interest only. We shall therefore merely state

the following facts. Equation (3) may be transformed into

the more simple form

(4) 3^+gx+h =

and the roots of (4) are given by the formula

^ 2^ ^27^4^ ^ 2 ^27^4

Since any given quantity has three cube roots (real or

imaginary), this formula determines the three roots of (4),

just as (2) determines the two roots of (1).

Similarly, the general equation of the fourth degree (com-

monly called the general biquadratic, or the general quartic)

may be solved, the formulas for its roots being, however,

highly comphcated. As regards the general equation of the

fifth degree (quintic) and all higher degrees, it is not possible

in general to express their solutions in terms of radicals.



CHAPTER XII

PERMUTATIONS AND COMBINATIONS

101. Introduction. Consider the following question.

How many signals may be given by hoisting 2 flags on a pole,

it being understood that there are 10 flags of different colors

to select from?

The answer canbe reasoned out as follows. The first flagmay
be chosen in any one of 10 ways and, having chosen it, the sec-

ond flag may be chosen in any one of 9 ways. Since to each of

the 10 choices of the first flag there thus correspond 9 choices

of the second, the answer must be 10X9, or 90 signals.

Again, if we ask in how many ways 3 letters may be mailed

on a street where there are 5 letter-boxes, we may reason as

follows: The first letter may be mailed in any one of 5 ways,

and, having been mailed, the second letter may likewise

be mailed in any one of 5 ways. Hence, as in the example

above, the first two letters may be mailed in 5X 5, or 25 ways.

But to each of these correspond 5 ways also of mafling the

third letter, hence the number of ways in which all three

letters may be mailed is 25X5, or 125 ways.

If a man can travel on any one of four routes from New
York to Buffalo, and thence on any one of three routes from

Buffalo to Chicago, he may make the whole trip (via Buffalo)

in any one of twelve routes.

Similar reasoning leads to the following general principle.

Fundamental Principle. 7/ one thing can he done in mi
different ways, and, having done it, a second thing can he done

in nii different ways, and having done it, a third thing can he

done in ma different ways, and so on, then the number of ways

in which the various things can be done jointly is the product

mi -m/i-nii--:

182
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EXERCISES

1. How many signals can be given by hoisting 3 flags if there are

8 different flags to select from?

2. In how many ways can 4 letters be mailed if there are 5 mail boxes?

3. In how many ways can 4 different positions be filled if there

are 3 apphcants for the first position, 2 for the second and 4 for each of

the others?

4. Answer Ex. 3 in case there are 12 apphcants in aU, each of whom
is ehgible to either place.

5. If a person owns a 5-seated automobile, in how many ways can

he seat a party of four for a ride?

6. Hdw many base-ball nines can be formed out of 9 men, it being

understood that any man can play in any place?

7. Answer Ex. 6 in case either A or B must pitch, while either B or

C must catch.

[Hint. Solve first on the supposition that A pitches and B catches.

Then consider similarly all possibiMties and add results.]

8. How many signals can be given with 6 different colored flags

which may be hoisted either singly or any number at a time?

9. How many even numbers can be formed using the digits 1, 2, 3,

4, 5, 6, 7, it being understood that all of the digits are to be used and
each used but once?

[Hint. Determine first how many ways the last digit of the number
may be chosen.]

10. Answer Ex. 9 in case any number of the digits may be used,

but no digit more than once.

11. In how many ways can an ace, king, queen and jack be drawn

from a pack of cards in the order named in case

(a) they may be of different suits,

(6) they must be of different suits,

(c) they must be of the same suit?

12. If a half-dollar, quarter-doUar, dime and nickel be tossed, in

how many ways can they come up?

13. If there are four convenient routes from Chicago to San Fran-

cisco, in how many ways can one conveniently make the round-trip?

14. In how many ways can one draw a square 1 inch on a side if

he has black, red and green ink at his disposal, using only one color

on any one side?
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102. Permutations. Consider the three letters a, b, c, and

let it be asked how many different arrangements, or permu-

tations, of these letters among themselves are possible. The

answer is six, as all such arrangements, or permutations, are

evidently the following:

abc, ach, bac, bca, cab, cba.

We might have asked a different question as follows.

How many permutations are possible with the four letters

a, b, c, d in case only two of them are used at a time. The

answer would now be twelve, such permutations being

ab, ba, ac, ca, ad, da, be, cb, bd, db, cd, dc.

In general, if we have n objects (regarded as different from

each other) there will be a certain number of possible ar-

rangements, or permutations, of them when taken r at a time.

If we represent the number of such permutations, as is

customary, by the symbol „/*,, we may show that „Pr is

determined by the formula

(1) nPr=n(n-l)(n-2)- (n-r+1).

For, the object to be Tpla,ced first in the arrangement may
evidently be chosen in any one of n ways, and, having chosen

it, but n—1 objects remain, so that the object to be placed

second may be chosen in any one of n— 1 ways; similarly,

the third object may be chosen in any one oi n—2 ways, the

fourth object in any one of n— 3 ways, and so on, until finally

the last, or rth o.bject may be chosen in any one of n—r+1
ways. Hence, applying the fundamental principle stated in

§ 101, we see that the total number of ways of arranging, or

permuting, the n objects when taken r at a time wiU be the

product n(n— l)(n— 2) ••• (n— r+1). That is, we arrive at

formula (1).

Thus, the nmnber of possible permutations of the 4 letters o, 6, c, d

when taken 3 at a time is, in accordance with (1), equal to 4-3-2, or 24.
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This may be verified by actually writing out all such permutations,

the result being as shown below.

ahc hoc cab dab

acb bca cha dba

acd bed cbd dbc

ode bdc cdb deb

abd bad cad doc

adb bda cda dca

Similarly, the number of permutations of 5 letters when taken all

at a time would be determined by formula (1) by placing in it n= 5

and r = 5, the result thus being 6-4-3-2-1, or 120. If, on the

other hand, we use only 3 of the letters at a time, the result would be

5 • 4 • 3, or 60. If we use 2 at a time, the result would be 5 • 4 or 20, etc.

103. The Factorial Numbers. If in formula (1) we place

r= n, the last factor becomes n—n-\-l, or 1, so that the right

member becomes

n(n-l)(n-2) •••2 1.

This expression, which represents the product of all the

integers from 1 to n inclusive, is called factorial n, and is

commonly designated by the symbol n !

Thus, 3! = l-2-3=6; 4! = 1 •2- 3 .4 = 24; 5! = 1 •2-3-4-5 = 120,

6!=720, 7!=6040, 81 = 40320, 91=362880, 101=3628800, etc.

Note. From the definition of n\ it follows that, whatever the value

of n, we shall have n\=n-(n— l)\. Placing n = l in this relation gives

1! = 1-0!, or 1 = 0!. Hence, the value of 0! must be taken as 1. (Compare

the meaning of a° as obtained in § 8).

Inasmuch as n! is the result of placing r = n in formula (1),

it follows that the number of permutations of n things taken all

at a time is n\

Expressed as a formula, this result becomes

(2) „/>„=n(n-l)-2-l = n!

Thus, the five letters a, b, c, d, e may be permuted among themselves

in 6! = 120 ways.
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EXERCISES

1. In how many ways can the letters a, 6, c, d, e be arranged if

taken 3 at a time?

2. How many numbers can be made out of the digits 1, 2, 3, 4, 5, 6

using four of them at a time, no digit being repeated?

3. In how many ways can 10 trees be planted in a row?

4. In how many ways can the letters A, B, C, a, b, c be arranged

so that the three capital letters shall stand first, and the three small

letters shall stand last?

[Hint. First find how many ways the capital letters can be ar-

ranged among themselves, then similarly as regards the small letters,

then use the Principle of § 101.]

5. Work Ex. 4 in case either the three capital letters or the three

small letters may stand first.

6. In how many ways can 5 French boolcs, 3 Latin books and 2

Spanish books be arranged on a shelf so that the French books shall

stand together, the Latin books together, and the Spanish books to-

gether?

7. Work Ex. 6 when it is required that the French books shall

stand first as a group, but the remaining 5 books may be arranged in

any manner thereafter.

8. In how many ways can a program of 3 speeches and 3 musical

numbers be arranged so that speeches and music shall alternate through-

out?

9. In how many ways can the knives, forks and spoons be distrib-

uted at a table where there is to be a dinner party of 6 people, each

of whom is to have a dinner knife, a bread- and butter knife, a dinner

fork, a salad fork, a soup spoon, a teaspoon and a coffee spoon?

10. In how many ways can the colors red, green, blue, indigo,

violet be arranged so that red and green do not stand together?

[Hint. The answer may be regarded as the difference between the

number of arrangements when no restrictions whatever are made and

the number when red and green stand together in either order.]

11. In how many ways can 4 different coins be stacked one upon

the other provided that at least one must be left with its face side up?

12. Show that formula (1) of § 102 may be written in the form

r -^.
n' r = •

r
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104. Combinations. A set of things regarded without

reference to the order in which they are arranged, is called a

combination of them.

Thus, abc, acb, bac, bca, cab and cba are the same combination

because each is made out of the same letters a, 6, c and in this respect

there is no difference between them. It is only when the arrangement

of the letters is taken into account that any such distinctions are

possible.

Let US ask how many combinations, in the sense defined

above, are possible out of the four letters a, b, c, d when taken

3 at a time. The answer is 4; namely, abc, abd, acd, bed.

Note that each of these is different from the three others in

that it is made up of different letters. Similarly, if we ask

how many combinations of the letters a, b, c, d are possible

when taken 2 at a time, the answer is 6; namely ab, ac, ad,

be, bd, cd. Finally, if taken 4 at a time, the answer is 1;

namely abed.

If we ask in a more general sense how many combinations

are possible out of n different things taken r at a time, we
may arrive at 'a formula for it as follows. Consider any one

combination. It contains r letters, which, if arranged in

all possible ways would give rise to r! permutations. (See

formula (2), § 103.) Since this is true of every different com-

bination, it follows that if we let „Cr represent the total

number of such combinations, we shaU have the equation

C •r'= P
where „Pr is the total number of permutations of the n things

taken r at a time. From this equation we have

pn* r

- > 7~'

r\

which, when we substitute for „Pr its value as given by (1),

§ 102, becomes

(1) ^g^^
n(n-l)---(n-r-H)

,
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This, therefore, is the formula desired. By multiplying

both its numerator and denominator by (n— r)!, observing

that the numerator then becomes

n(n— 1) ••• (n—r+1) • (n—r)\ =
n{n— l) ••• {n—r-}-l)(n— r)(n—r— l) • l=n\,

the formula takes the more condensed form

^2) "^' = rl(n-r)\

Note. It may be noted that formula (1) for ^Cr is the same as is

obtained if, in the formula as given in § 79 for the coefficient of the rth

term of the binomial expansion for (a+x)", one uses (r+1) in place of r.

The binomial theorem for positive integral exponents may therefore

be written in the form

Example 1. How many committees of 3 men each can be formed

from 8 men?

SoLtTTioN. Since the personnel of a committee is in nowise changed

by a different arrangement of the men in it, the question resolves itself

into finding the number of combinations of 8 men when taken 3 at a time.

Hence, using the first of the formulas above, we obtain the answer

8-7 -6^

Example 2. How many selections each consisting of 3 oranges

and 2 apples may be made from a basket containing 6 oranges and 4

apples?

Solution. The number of ways in which the 3 oranges may be

selected is

<• 5 • 4

The number of ways in which the 2 apples may be selected is

2

Hence, by the fundamental principle of § 101, the 3 oranges and

2 apples may together be selected in 20X6 = 120 waj's. Ans.

6g3< ^ ^=20.
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EXERCISES

1. A captain having under his command 20 men wishes to form a
guard of 3 men. In how many ways may the guard be formed?

2. How many peals may be rung with 7 different bells by striking

them 4 at a time?

3. How many hands of cards, each made up of 6 hearts, are there

in a pack of cards?

[Hint. The pack contains 52 cards, there being 13 -each of hearts,

diamonds, spades and clubs.]

4. A chandeher contains 10 lights. In how many ways may the
room be hghted if only 8 lights are used?

5. How many straight lines may be drawn through 8 points no
three of which lie in the same straight line?

6. Out of 8 different English books and 7 different French books,

how many selections of 6 books may be made each containing 3 Enghsh
and 3 French books?

7. Work Ex. 6- in case each selection of 6 books must contain at least

2 English and 2 French books?

[Hint. Consider separately the various possibihties, as in Ex. 7,

page 183, and add results.]

8. A candidate for a certain office is to be elected in case he receives

a majority of the votes cast by 10 people. In how many ways could

the majority be secured?

9. Out of 15 men how many selections of 4 men each can be made
each of which will contain a certain particular man?

[Hint. Take out the particular man and then consider'the remaining

14 men.]

10. A whist-hand contains 13 cards. How many such hands each

made up of 4 spades, 4 hearts, 4 diamonds and 1 club is it possible

to form?

11. Out of a basket containing 6 oranges, 8 apples and 3 peaches,

how many selections of 5 each may be made that shall contain at least

one orange?

[Hint. The answer may be regarded as the difference between the

number of selections of 5 indiscriminately and the number when no

oranges are taken.]

12. Show that the dumber of combinations of n things taken r at

a time is the same a^ when taken n—r at a time.
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*105. Distribution into Groups. If it be asked in how many ways
10 different things may be distributed among 3 'persons A, B, C so that

A shall receive 5, B shall receive 3, and C shall receive 2, the answer

may be determined as follows. Starting with A, he may receive his

5 things in

10!
10C5 =rrr; ways. (See formula (2), § 104)

o!o!

B may now be given his 3 things out of the remaining 5 things in

Finally, C may be given his 2 things out of the remaining 2 things in

2C2 =—=^ ways. (See Note, § 103)

Applying the Theorem of § 101, the 10 things may therefore be
distributed in the manner specified in

10! 5! 2!

^^i!y!^2l^^y'-

Noting cancellations, we may reduce this product to the form

4

10! '/^- //• /• ,6^ 7 • ,8< 9 • 10

H!^!>XV4'.X-X-X-X
=2520 ways. An..

The same method of reasoning when applied more generally leads

to the following result.

The number of ways in which n different things may be distributed into

a specified number of groups such that the first group shall contain p things,

the second shall contain q things, the third shall contain r things, etc. is

given by the formula

(1) N=
,

."•.

Example. In how many ways may 14 apples be distributed among
four children so that the oldest shall receive 5, the next younger 4, the
pext younger 3 and the youngest 2.

Solution. By means of the above general formula, the answer is

14!

5! 4! 3! 2!
^2.522,520 ways. Ans.
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Note. It is to be observed that if the number of things to be put
in each group is the same that is, p =q=r = "-, and if there is.no dis-

tinction made between the groups (such as first, second, etc.), then the

formula above must be sUghtly changed, becoming

(2) N= ^
g[ pi qlrl • •

where g is the number of the groups. The reason for this may be

immediately imphed from the following example.

Example. In how many ways may 12 men be divided into three

groups of 4 each?

SoLTTTioN. Formula (1) would give

12!

4! 4! 4!'

But to take this as the answer implies that any way of dividing the

men into the three equal groups gives rise to another way by redis-

tributing the same three groups among themselves, which can be done

in 3! ways. Since the question is merely as to the number of possible

groups without reference to their order, the result above must therefore

be divided by 3!, giving as the correct answer

12!

g^^^^j
=5775 ways

and thus agreeing with the result given by (2) for this example.

*106. Permutations of Things not all Different. In the previous

discussions of this chapter all the things dealt with have been regarded

as different, or distinguishable, from each other. In distinction from

this, consider the following example.

Example. How many permutations are possible of the letters of

the word infinite when taken all together?

Solution. Since no new permutation arises by interchanging the

three i's among themselves, or the two n's among themselves, let us

suppose at first that the i's are made dissimilar by calling them respec7

tively ii, i^, ii, and likewise the n's by calling them respectively ni, n^

.

Under such a supposition, the answer, by formula (2) of § 103, would

be 8!, since there would then be a total of 8 dissimilar letters. If the

three i's be now regarded as the same, each of these 8! peimutations

gives rise (by permuting the 3 i's among themselves) to 3! permutations

that are identically the same. Hence, if the i's alone be regarded as
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the same, the answer would be 8!/3!. But if the two n's be now re-

garded as the same, each of these 8!/3! permutations gives rise by similar

reasoning to 2! permutations that are the same. Hence, the correct

answer is

8!

The same method of reasoning when applied more generally leads

to the following result:

The number of permutations among themselves of n things of which ni

are alike of one kind, n^ are alike of another kind, ng are alike of another

kind, etc., is given by the formula

P= ^
Til! 02! Hs! • • •

MISCELLANEOUS EXERCISES

Success in working an example in permutations and combinations

depends chiefly upon one's abiUty to determine to what extent the

order of the things considered must be taken into account. Examples
in the following list accompanied by the star (*) depend upon §§ 105-106.

1. On a railroad there are 20 stations. How many tickets are

required to connect every station with every other one?

?. The Greek alphabet contains 24 letters. How many Greek letter

fraternity names -can be formed, each containing 3 letters, a repetition

of letters being allowed?

3. In how many ways can 6 ladies and 6 gentlemen form couples

for a dance?

*4. Eight persons are to play cards. In how many ways can partners

be formed?

5. Show that the number of ways in which n persons may be distri-

buted among themselves at a round table is (w— 1)!

6. In how many ways can a selection of at least 4 oranges be made
from a basket of 8 oranges?

7. A box contains 6 red cards, 5 white cards and 4 blue cards. In
how many ways can a selection of three cards be made such that

(a) alli'three are red?

(b) none are red?

(c) at least one is red?
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*8. How many arrangements of the letters of the word Mississippi

are possible?

*9. How many signals can be made with 7 flags, of which 2 are

red, 1 white, 3 blue and 1 yellow, displayed altogether one above the

other?

10. How many dominoes are there in a set numbered from double

blank to double ten?

*11. A collection of 12 books is to be distributed equally among
4 people. In how many ways can it be done, no regard being had for

the order in which they are given out?

*12. A collection of 12 books is to be divided into 4 equal piles. In

how many ways can it be done, no regard being had for the order in

which they appear in each pUe?

13. Answer Ex. 12 in case regard is taken of the order of the books

in each pile.

14. How many committees, each containing 4 men, can be formed

from 5 Republicans and 5 Democrats, it being understood that at least

one RepubUcan and one Democrat must be on the committee.

15. From a basket of 8 apples, in how many ways can a selection

be made, it being understood that any or all of the apples can be taken?



CHAPTER XIII

PROBABILITY

107. Introduction. If a letter be chosen at random from

the alphabet the chance, or probability, that it will be a is

naturally regarded as 1/26 since, out of the 26 ways in which

a letter may be drawn, only 1 gives a. Similarly, the proba-

bility, or chance, of drawing any single letter, as m, would

be 1/26. However, if we ask the probability of drawing a

vowel, the answer would be 5/26, since a vowel may be drawn

in any one of 5 ways; namely, either a, e, i, o or u.

As another example, suppose that a bag contains 4 red

balls and 5 white balls, and that a ball is drawn at random.

The probability that it will be red is then 4/9, since out of the

total of 9 ways of drawing a ball, 4 give red ones. Similarly,

the probability of drawing a white ball is 5/9. These and

other illustrations which may be readily suppKed lead to the

following definition.

Definition. The probability of an event is the ratio of the

number of ways in which it can happen {all regarded as equally

likely) to the total number of ways in which it can either happen

or fail.

Thus the probability of drawing an ace from a pack of cards is

4/52, or 1/13, since there are 4 ways in which the event can happen out

of a total of 52 ways in which it can either happen or fail, the latter

being the total number of cards in the pack.

This definition, when stated in algebraic language, is as

follows. Let a be the number of ways in which an event can

happen, and let b be the number of ways in which it can fail

(all ways being regarded as equally likely). Then the proba-

bility, p, that the event will happen is

(1) .=^-a+b
194
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CoROLLABT 1. If an event is certain to happen, its proba-

bility is 1. For in (1) we then have 6= 0, giving p — a/a = l.

CoROLLABY 2. The probability that an event will happen

and the probability that it mil fail, when added together, give 1.

For, just as the fraction (1) is the probability that the event

will happen, so the fraction

(2) q= -

"^

a+b

is the probability that the event will fail, and it is evident

that the sum of the expressions (1) and (2) is 1.

108. Value of an Expectation. If a person is to receive

$100 in case a certain event happens, and the probability of

the event is 3/5, then the value of his expectation is naturally

3/5X100 = $60. This amount, in other words, is what he

should pay for the privilege of beiug the possible recipient

of the $100. In general, we thus adopt the foUowiag definition.

Definition. If a person is to receive the sum of money M
in case an event occurs whose probability is p, then the value of

his expectation is pM.

EXERCISES

1. A bag contains 6 red balls, 4 white balls and 3 blue balls. If a

ball be drawn at random, what is the probabihty that it wiU be (a) red,

(6) white, (c) blue?

2. From a suit of 13 hearts, 3 cards are drawn. What is the chance

that they will be the ace, king and queen?

[Hint. Three cards may be drawn in 13C3 ways.]

3. The four capital letters A, B, C, D and the four small letters

o, 6, c, d are shaken together in a hat after which three letters are drawn

out at random. What is the probabUity that they wiU all be capitals?

Solution. Since there are 8 letters in all, the total number of ways

of drawing 3 letters of any kind is

^C3= ^11-6 = 56.
* ^ 12-3



196 COLLEGE ALGEBRA [XIII, § 108

Similarly, the number of ways of drawing 3 capital letters is

4- 3
•

2

^
^^'"l-2.3"

4 1

Hence the desired probabUity is — > or — Ans.
56 14

4. Find the probability in Ex. 3 that the three letters drawn shall

consist of two capitals and 1 small letter.

[Hint. The number of ways of drawing 2 capitals and 1 small letter

is4C3X4Ci. (§§104,101).]

5. A portfoUo contains 15 bills, 6 of which are $5 bills, 4 are $2 bills

and 5 are $1 bills. If 4 bills be taken at random find the chance that

(a) all are $5 bills,

(6) 3 are $2 bills and 1 is a S5 bill,

(c) all are $1 bills.

6. A history of Rome in four volumes is placed on a library shelf at

random. What is the probabiUty that the volumes will be in their

correct order: I, II, III, IV?

7. If 4 cards be drawn from an ordinary pack, what is the proba-

bility that

(a) they will all be hearts?

(6) that there will be 1 card of each suit?

8. If two tickets be drawn from a package of 20 tickets marked

1, 2, 3, ••, 20, what is the probabihty that both will be marked with

odd numbers?

9. If three coins be tossed, what is the probability that

(a) all will be heads?

(b) there wUl be exactly two heads?

(c) there will be at least two heads?

10. If three cards be drawn from a pack, what is the probability

that they will be an ace, king and queen of different suits?

11. A person is to receive $5 in case he tosses two coins and they
both come up heads. What is the value of his expectation?

12. What can a person properly afford to pay for the privilege of

receiving $7.50 in case that he draws 2 tickets from a box containing

tickets marked from 1 to 15 inclusive and finds that the one is odd and
the other even?
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109. Definitions. The preceding discussions and illus-

trations of the theory of probability are the immediate conse-

quences of the definition of the term "probability," as given

in § 107. If one is to proceed farther into the subject, it is

desirable to make certain fundamental distinctions between
the possible kinds of events, as indicated below.

Two or more events are called dependent or independent

according as the happening of one of them does or does not

affect the happening of the others.

Thus, if a drawing be made at random of one letter from a box
containing the letters a, b, c, d, e and this be followed by another similar

drawing, the two events would be independent in case the letter first

drawn was replaced in the box before the second drawing, while the

events would be dependent in case this was not done.

110. Theorem Concerning Independent Events. In deter-

mining the probability that two or more independent events

will all happen, one may employ the following theorem.

Theorem. The probability that two or more independent

events will all happen is equal to the product of their respective

probabilities^ >

Thus, suppose that two coins are tossed. The probability that the

one will come up heads is evidently 1/2, and the probability that the

other will come up heads is likewise 1/2. Therefore, the probability

that both will come up heads is, by the above Theorem, 1/2X1/2 = 1/4.

This result may be verified by noting that the total number of ways
in which the two coins may fall is 2X2=4, and of these only 1 gives

two heads. Hence, the answer, as before, is 1/4.

Similarly, the probability that three coins will all come up heads is

1/2X1/2X1/2 = 1/8.

Proof of Theorem. Suppose that the probabilities of

the separate events are respectively pr, p^, pz, •, Pr, and let

Ui be the number of ways in which the event corresponding

to pi can happen and 6i the number of ways in which this

event can fail; similarly let Oa be the number of ways in

which the event corresponding to p^ can happen, and 62 the
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number of ways in which this event can fail, etc. Then, by
the definition stated in § 107, we shall have

(1) pi=——-) P2=
—-r' •••, Vr

=
ai+6l CI2+&2 OSr+&r

Moreover, by the principle of § 101, all the separate events

can happen together in ai 02 as ••• ctr ways out of

(ai+6i)(a2+&2) ••• {cLr+h)

possible ways of either happening or failing. Hence, if P be

the probabihty that all the events will happen, we have by

the definition in § 107,

(2\ P =
"^^•••^'-

^
'

(ai+&i) (02+62) - {a,+hr)

But, upon using (1), the expression (2) may be written in

the form

which was to be proved.

111. Dependent Events. Although the theorem of § 110

pertains only to independent events, it may frequently be

applied to determine probability in the case of dependent

events, since the latter may usually be separated so as to be

regarded as independent.

Example. One letter is drawn from a box containing the letters

a, h, c, d, e and a second drawing is then made (the first letter obtained

not being replaced before the second drawing). What is the probability

that the letters thus drawn are first a and second b?

Solution. The probability of obtaining a on the first drawing is

evidently 1/5 and, a having been drawn, the probability of obtaining

6 on the second drawing is 1/4, since but 4 letters remain after the first

drawing. Therefore, by the theorem of § 110, the desired proba-

bility is 1/5X1/4 = 1/20. Am.
This result may be verified as follows. The total number of ways

of drawing 2 letters is 5X4 = 20 and of these there is but one that gives

first a and then 6. Hence, the probability is 1/20, which agrees with

the former result.
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112. Theorem Concerning Events That Can Happen in

Several Ways. In determining the probability that an event

wiU happen in case it can happen in any one of two or more
different ways which are mutually exclusive, one may
employ the following theorem.

Theorem. If an event can happen in any one of two or

more different ways which are mutually exclusive, the proba-

bility that it will happen is the sum of the probabilities of

its happening in these different ways.

Thus, if it be asked what is the probabihty of getting either two
heads or two tails when two coins are tossed, we may reason as follows.

The probability of getting two heads, as shown in § 110, is 1/4, and
similarly the probabihty of getting two tails is 1/4. Therefore, by the

theorem above, the probability of getting either two heads or two tails

is 1/4+1/4 = 1/2.

This result may be verified by noting that the total number of ways
in which the two coins may fall is 2X2 = 4, and of these 1 gives both

heads and 1 gives both tails. Hence, the probabihty of getting either

both heads or both tails is =2/4 = 1/2, thus agreeing with the
4

former result.

Pboof of Theorem. Suppose that the event can happen

in two mutually exclusive ways, and let pi= ai/6i and p2=
02/62 be their respective probabilities. Then, out of a total

of 61 fca possible cases leading to success or failure in either

of the two ways, there are ai 62 in which the event can happen

in the first way and 0261 in which it can happen in the second

way. Hence, out of the fei&2 cases there are 0162+0261 cases

in which the event can happen in the one or the other of the

two ways, the probabihty of which is therefore

0162+0261 Ox , 02—VT = 7-+7- = Pl+P2.
O1O2 Oi O2

The theorem thus becomes proved in case there are but

two ways in which the event can happen. Similar reasoning

leads directly to the more general case.
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113. Theorem Concerning Repeated Trials. If the proba-

bility of the happening of an event in a single trial is known,

the probability that it will happen exactly r times in n trials

may be determined by use of the following theorem.

Theobem. If p is the probability that an event vnll happen

in any single trial, then the probability that it will happen

exactly r times in n trials is nCrP'(t'^, where q is the probability

that the event will fail in any one trial.

Thus, if it be asked what is the probability of throwing exactly

3 aces in 5 throws with a single die, the answer is

/ly
/5y_,f, J_ 25 125

' ' '

\6/ V6/
'

216
' 36~3888"

Proof of Theorem. The probability that the event will

happen in r specified trials and fail in the remaining (n—r)

trials is, by § 110, p'"g""^. But the r trials can be selected out

of the n trials in ^C^ ways. Hence, applying the theorem of

§ 112, it follows that the probability in question is the result

of adding p''g"'^ to itself „Cr times; that is, it is equal to

n'^r P 2

It is to be observed that if we expand (p+q)" by the

Binomial Theorem (§ 104, Note), we obtain

Thus, the terms of this expansion represent respectively the

probabilities of the happening of the event exactly n times,

(n— 1) times, (n— 2) times, in n trials.

Moreover, by combining this result with that of § 112,

we obtain the following coroUary.

Corollary The probability that an event will happen

at least r times in n trials is

p''+nClP''-'q+nC,P^-V+ - +nCn-rPY'',

where p and q have the meanings indicated above. In fact, by

§ 112, this expression comes to represent the probability that
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the event will happen either exactly n times, or exactly (n— 1)

times, or exactly (n— 2) times, ••or exactly r times; that

is, that it will Happen at least r times.

Thus the probability of obtaining at least 3 aces in 5 throws with

a single die is

.6 n\i /.;\ /1\3 /Rs2 1+5-5+10-25 276 23

6' ~
6' ~648'©•--©•©—©©'

EXERCISES

1. Find the probability of throwing an ace in the first only of two
successive throws with a die.

2. If three cards be drawn from a pack, find the probability that

they will be an ace, a king and a queen in the orderearned.

3. Work Ex. 2 in case no regard is had for the order in which the

three desired cards are obtained.

[Hint. Consider each possible order and apply the theorem of

§ 112 to the separate results.]

4. Find, by use of the theorem of § 112, the probability of throwing

doublets in a single throw with a pair of dice.

5. In three throws with a pair of dice, find the probabihty of throw-

ing doublets at least once.

6. A bag contains 5 white and 3 black balls, and 4 are successively

drawn out and not replaced. What is the probabihty that they are

alternately of different colors?

7. A, B, C in the order named each draw a card from an ordinary

pack, replacing the drawing each time. If the first one to obtain a

spade is to win a prize, show that their expectations are in the ratio

16:12:9.

[Hint. First find the probability that A obtains a spade; second,

the probability that A fails to obtain a spade, but B obtains one; etc.

It is understood that a total of only three drawings can be made.]

8. A and B throw with one die for a stake which is to be won by

the player who first throws an ace. A has the first throw and the

throwing is to continue alternately until either the one or the other wins.

Show that their respective probabilities of winning are

and hence that their respective expectations are in the ratio of 6:5.
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114. Probability of Human Life. Mortality Table. If a

person 19 years of age asks what the probability is that he

will live to the age of 75, the question may be answered with

good accuracy by consulting a so-caUed Experience Table of

Mortality. Such a table is shown on the opposite page and

is readily understood upon examination. It shows in par-

ticular that out of 93,362 persons living at the age of 19 it

may be expected that at the age of 75 there will remain

26,237. Hence, the answer to the preceding question is

26,237/93,362, or about 0.28 Otherwise stated, the chances

that a person of 19 will live to be 75 are about 28 out of 100.

The table on page 203 was compiled from the averaged

observations of thirty American insurance companies to the

end of the year 1874. Such a table is evidently of vital

importance in answering the questions which ordinarily come
before a hfe insurance company, or any person entrusted to

work out a proper pension system for a group of employees,

or the judge who wishes to determine what is a proper life

interest of a client in an estate. Such questions depend upon
the probable extent of life of an individual at a given age.

EXERCISES

1. What is the probability that the average American boy of 10

years will live to vote at a public election. What is the probabOity

that he will live to the age of 80?

2. A man is 47 and his son is 15. Show that the probabiUty that

both wiU hve 10 years is about 0.55

[Hint. Apply the theorem of § 110.]

3. A bridegroom of 24 marries a bride of 21. Show that the proba-

bihty that they will hve to celebrate their golden wedding is about 0.12

4. A and B are twins just 18 years old. Show that the probabihty

that both will attain the age of 50 is about 0.55; also, that the proba-
bihty that one, but not both, will die before the age of 50 is about 0.68.

[Hint. Employ the theorem of § 112.]

6. Draw on coordinate paper the graph of the curve showing the
probabihty of dying for each year from the ages of 10 to 90.
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American Expeeibncb Table of Mortality

Age



CHAPTER XIV

DETERMINANTS

115. Definitions. The symbol

a h

c d

is called a determinant of the second order and is defined

as follows:

a b

Thus
8
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116. Solution of Two Linear Equations. Let us consider

a system of two linear equations between two unknown
letters, x and y. Any such system is of the form

(1) aix+biy = ci,

(2) 02a;+622/ = C2,

where ai, 6i, d, etc., represent known numbers (coefficients).

This system may be solved for x and y by elimination, as

in § 5. Thus, multiplying (1) by 62 and (2) by 61, subtract-

ing the resulting equations from each other, and solving for

X, we find

b^ci— biC2
(3)

fli&2— (hbi

Likewise, we may eliminate x by multiplying (1) by Oa

and (2) by aj. Subtracting the resulting equations from each

other and solving for y, we find

0.1C2 ~<hCi
(4) y=-

Uibi— 0261

It is now clear, by § 115, that the numerators and denomi-

nators in (3) and (4) are all determinants of the second order;

and by the definition of § 115, (3) and (4) may be written

respectively in the forms

(5) x= -

Ci

C2

y-

Oi

(h

02 62 02 62

These forms are easily remembered. Observe that:

1. The determinant for the denominator is the same for

both X and y.

2. The determinant for the munerator of the x-value is the

same as that for the denominator except that the numbers

Ci and C2 replace the Oi and Os which occur in the first colmnn

of the denominator determinant.
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3. The detenninant for the numerator of the j/-value is

the same as that for the denominator except that the num-

bers Ci and C2 replace the 6i and &2 which occur in the second

column of the denominator determinant.

The usefulness of the forms (5) lies in the fact that they

express the solution of a system of two linear equations in

condensed form, enabhng us to write down the desired values

of X and y immediately, without the usual process of elimina-

tion. This will now be illustrated.

Example. Solve by determinants the system

(6)

(7)
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117. Determinants of the Third Order. The symbol

ai 6i Ci

(1) 02 hi d
as 63 cz

is called a determinant of the third order.

Its value is defined as follows:

(2) aJ)2Cz+ hxCiUi+ 010263— 036201— 630201— £30261.

This expression, as we shall see presently, is important in

the study of equations.

The expression (2) is called the expandedform of the deter-

minant (1). It is important to observe that this expanded

form may be written down at once as follows.

Write the determinant with the first two columns re-

peated at the right and first note the three diagonals which

then run down from left to right

(marked +). The product of the

elements ia the first of these diag-

onals is O162C3, and this is seen to

be the first term of the expanded

form (2). Similarly, the product of

the elements in the second of these

diagonals is 61C2O3, which forms the second term of (2); and
likewise the third diagonal furnishes at once the third term

of (2).

Next consider the three diagonals which run u-p from left

to right (marked with dotted lines). The product of the

elements in the first of these is O362C1, and this is the fourth

term of (2), provided it be taken negatively, that is, preceded

by the sign — . Similarly, the other two dotted diagonals of

(3) furnish the last two terms of (2), provided they be taken

negatively.

Note. Every determinant of the third order when expanded con-

tains a total of six terms.

Fio. 57
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Example. Expand and find the value of the determinant

3 7 9

2 14
6 3 2

Solution. Repeating the first and second columns at the right,

we have

3 7

2 1

6 3

The diagonals running down from left to right give the three products

3 • 1 • 2, 7 • 4 • 6, 9 • 2 • 3,

which form the first three terms of the expansion.

The diagonals running up from left to right give the products

6 1 • 9, 3 • 4 • 3, 2 • 2 • 7,

which, when taken negatively, form the three remaining terms of the

determinant.

The complete expanded form of (3) is, therefore,

3-l-2 + 7-4-6+9-2-3-6-l-9-3-4-3-,2-2-7,
which reduces to

6+168+54-54-36-28 = 110. Am.

EXERCISES

Expand and find the value of each of the following determinants.

12 7

1. 2 2 6

3 2-4

2.

-7 4 2

3 2 6

8 -8 -3

8 2 3

3 0-2
3 7

6 9 8

10 11 12

14 15 16

6.

X 7 8

2 3-1
4 2 3
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118. Solution of Three Linear Equations. Let us con-

sider a system of three linear equations between three un-

known letters, such as x, y, and z. Any such system is of

the form

{aix+biy+ciz= di,

ch;c+b2y+C2?=d2,

a3X+hy+c^=ds,

where Oi, &i, ci, di, Oj, ba, etc., represent known numbers

(coefficients).

This system may be solved for x, y, and z by elimination,

as in § 5, but the process is long. We shall here state merely

the results, which are as follows (compare with (3) and (4)

of §116):

dibiCg+ d2&3Ci

+

dabid— dabiCi —dibaC^—d^biCs

(2)

x=

z =

ajbiCa+ 026301+ a3?>iC2

—

agbiCi —aibsd—a^biCa

Oicfecs

+

(hdiCi+asdiC2— asd^Ci— aidsc^— a^diCs
= }

a^2Ci+ ai)iCi+a^bid— a^biCi— aibiC2— (hbiCa

fl]Ws -\-(hbsdi-\-a3bidi—asb2di— aib3d2—(hbids

dibiCs+ oaf'sCi

+

asbid— agbiCi —aibid— a^iCz

It is clear by § 117 that in these values for x, y, and z, each

numerator and denominator is the expanded form of a deter-

minant of the third order. In fact, it appears from the defi-

nition in § 117, that we may now express these values of

X, y, and z in the following condensed (determinant) forms:

(3) X-

rfl 61 Ci

rfa &2 C2

^3 ?>3 Cs

fill b\ Ci

02 &2 C2

03 63 Ci
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in very compact and easily remembered forms. Here we note that:

1. The denominator determinant is the same in all three cases.

(Compare statement 1 of § 116.)

2. The determinant for the numerator of the x-value is the same
as that for the denominator determinant except that the numbers

di, (k, ds replace the ai, 02, 03 which occur in the first column of the

denominator determinant.

3. Similarly, the numerator of the y-yahie is formed from that of

the denominator determinant by replacing the second column by the

elements di, d^, dg; while the numerator of the g-value is formed from

that of the denominator determinant by replacing the third column by
the elements di, d^, dg. (Compare statements 2 and 3 of § 116.)

The readiness with which (3) may be used in practice to solve a

system of three linear equations is illustrated below.

Example. Solve the system

2x-y+3z = 35,

x+3y-15=-2z,
3x+4y = l.

SoLtTTioN. Arranging the equations as in (1) of § 118, the given

system is

2x-y+3z = 35,

x+3y+2z = 15,

3x+iy+0z = l.

Therefore, using (3) of § 118, we have at once

35 -1 3

15 3 214
2 -1
1 3

3 4

y=-

35

15

1

0+180-2-9-280-0 -111

0+12-6-27-16-0 -37
=3, (§ 117)

0+3+210-135-4-0 74

-37 -37 -37
= -2,

2
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The desired solution is, therefore, (x=3, y=—2, = 9), Ans.

Check. With x = 3, 2/= —2, 2 = 9, it is readily seen that the three

given equations are satisfied.

EXERCISES

Solve each of the following systems by determinants.

r a; +22/+32 = 14,

1. ] 2x+ 2/+22 = 10,

(.3x+4i/-32 = 2.

(2x- y+2z = 12,

2. ] x+3y+ 2 = 41,

(2a;+ 2/+42 = 22.

a;- 2/+2 = 30,

32/-X- 2 = 12,

7z-2/+2x = 141.

r x+3y+4z = 83,

4. j x+ ^+ 2 = 29,

(.6x+82/+32 = 156.

6.

7.

3X-22/+ 2 = 2,

2.r+5y+2z = 27,

x+3y+3z = 25.

x+y = 9,

6. ! y+z = 7,

. 2+X = 5.

x+2/—2 = 0,

x-2/ =2b,

x+z =3o+6.

f ax+%+c2 = 3,

8. I abx+aby =o+6,
{^bcy+bcz =b-\-c.

119. Determinants of Higher Order. The determinants

thus far studied have been of either the second or third

orders, the former containing 2^, or 4 elements, and the latter

3^, or 9 elements. In general, a determinant of the nth order

is a square array of n' elements such as is typified by the

expression

fli 6i Ci di • li

02 62 C2 d2h
D= as 63 Cs da I3

'71 ^n ^n 0„"'t^

The method for obtaining the expanded form of any

such determinant (compare (2), § 117) will be explained in

detail in § 121.
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120. Inversions of Order Consider the positive integers

1, 2, 3, 4. As here appearing, these are in their natural order,

each number being less than all those which follow it. If

the same numbers be arranged as follows: 4, 2, 3, 1, there

are five departures from the natural order; namely, 4 before

2, 4 before 3, 4 before 1, 2 before 1 and 3 before 1. Each of

these is called an inversion of order, Briefly stated, we
say that 4, 2, 3, 1 contains five inversions.

Similarly, any given arrangement of two or more positive

integers contains a certain number of inversions, this nimiber

being only in case the numbers occur in their natural order.

Thus, in 3, 4, 1, 2, there are 4 inversions; namely, 3 before 1, 3 before

2, 4 before 1 and 4 before 2. Similarly, in 1, 3, 4, 5, 2 there are 3 inver-

sions; in 1, 3, 2 there is 1 inversion, etc.

121. The Expanded Form of Any Determinant. An
examination of the expanded form of the typical determinant

of the third order, as given in (2) of § 117, shows that it may
be written in the form

ai?>2C3

+

agbid+ Oa&sCi

—

aibiCi— aibad— OabiCa.

It is now to be observed that each of the six terms here

appearing contains three factors, of which the first is an a,

the second a b and the third a c, and the subscripts of these

letters in any one term are all different, as for example in the

third term O263C1. Moreover, in the case of the three terms

which are preceded by the sign +, the number of inversions

in the subscripts is even, while in the case of the three terms

preceded by the sign — , the number of inversions in the

subscripts is odd.

Thus, in the term +036102, there are two inversions in the sub-

scripts, this number being even, while in the term —asb^i there are

three such inversions, this being odd. Similarly, the term +026301, is

seen to be accompanied with an even number of inversions, while

— 0261C3 has an odd number of them.
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Taking now the type determinant of the fourth order,

namely

(1)

fli bi Ci di

(h ^2 C2 di

as bs Cs di

at 64 Ci di

the observations made above suggest that its expanded form
consists of all the terms that can be made, each consisting

of four factors of which the first is an a, the second a b, the

third a c and the fourth a d and in which no two subscripts

are ahke, and with the further understanding that the sign

to be prefixed to any one term as thus formed is to be +
or — according as the number of inversions in its subscripts

is even or odd. This, in fact, is what the meaning of (1) is

taken to be, and we shall so understand hereafter.

For example, +016203^4, —026304^1, +026361^4 are three particular

terms in the expansion of (1).

It may be observed that the total number of terms as thus

described belonging to the expanded form of (1) is 24, or 4
!,

since the a to be used in forming a term may fi^rst be chosen

in any one of 4 ways, then the b may be chosen in any one

of 3 ways (its subscript being necessarily different from that

of the a chosen), then the c may be chosen in any one of 2

ways (its subscript being neither of those already used), and

finally the d may be chosen in but 1 way and therefore, by

§ 101, the four elements for any one term may be selected in

4. 3. 2-1 = 24 = 4! ways. The student is advised to write

out all of the 24 terms, prefixing the proper sign to each.

Similarly, the expanded form for the typical fifth order

determinant may now be supplied. In this case there are

5 != 120 terms each of the form a^ b, Ci d^ e^, where no two of

the subscripts r, s, t, u, v are alike and where the sign of any

one term is taken + or — according as the number of inver-

sions among these subscripts is even or odd.
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Likewise, for any given value of n, the determinant D of

§ 119 may be expanded, this expansion containing in all n!

terms, each the product of n elements properly chosen.

Note. For convenience, the typical determinant of the third order,

namely (1) of § 117, is frequently written in the condensed form |ai62C3|.

Likewise, the typical fourth order determinant may be represented by

1 016203(^4 1, and similarly for determinants of higher orders.

EXERCISES

1. Write, with their proper signs, all the terms of the determinant

1016203^465! that contain both oi and 64; also all the terms that contain

both 63 and 65.

2. By expanding the following determinant, show that its value

is 19.

119, the first column contains

so that we here have ai = 3,

3
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Pboof. Let us consider the theorem first for deter-

minants of the third order. What we are then to prove is that

Oi 61 Ci

02 &2 C2(1)

as 03 Ca

fll
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change two adjacent subscripts in each term of its expansion.

This will change the sign of every term in the expansion, by

§ 121, and hence will change the sign of the whole deter-

minant. -
,

If, more generally, the two rows to be iiiterchanged are

separated by m intermediate rows, we first note that the

lower row may be brought just below the upper one by m
successive interchanges of adjacent rows. To bring the

upper row into the original position of the lower one then

requires m+1 further successive interchanges. It follows

that interchanging the two rows in question is equivalent

to introducing

m+(m+l)=2m+l

interchanges of adjacent rows and therefore, from what is

said above, is equivalent to multiplying the original deter-

minant 2m-f-l times by —1; that is, by (— 1)^™"'''. But
2m+l is necessarily an odd number whatever the (positive,

integral) value of m. Hence (— l)2"'+i
jg equal in all cases

to —1, so that the theorem becomes proved for the case of

the interchange of any two rows. To prove it also for the

case of the interchange of any two columns, it suffices to

write the original determinant, as we may do by Theorem
I, in a form where its successive rows and columns become

interchanged and then apply to the result the reasoning

already given concerning the interchange of two rows.

Theorem III. If a determinant D has two of its rows {or

columns) identical, its value is zero.

For example, without expanding the determinant, we may write

at once

1-13 4

2 5 3 1^1-13 4

5 6 8 7

the first and third rows being here identical.
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Peoof. By interchanging the two identical rows we
obtain, by Theorem II, the value —D. But, interchanging

two identical rows does not alter the form of the original

determinant. Hence, we have D= —D, or 2D = 0, or D = 0.

Similarly, the proof for the case of the interchange of two

identical columns follows directly from Theorem II.

Theorem IV. If every element of a row (or column) of a

determinant is multiplied by any given number m, the deter-

minant is multiplied by m.

Thus
2

-1
2 • 3

3

1

2 -2
= 2

2

-1
3

Here the elements of the last row, regarded as 3, 2, 4, are each

multipMed by 2.

Pboof. The theorem is an immediate consequence of

the fact that one and only one of the elements that have

been multiplied by m enters into each term of the expansion,

thus multiplying the whole expansion by m.

Theorem V. If each of the elements in a row (or column)

is expressed as the sum of two numbers, the determinant may
be expressed as the sum of two determinants. That is, (in the

case of the third order determinant)

ai+oi'
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Theorem VI. The value of a determinant is not changed

if the elements in any row {or column) are multiplied by any

number m, and added to, or subtracted from, the corresponding

elements in any other row (or column). Thus, for example,

ai+m6i

Oi+mh
aa+mh

ai

as

6i

Proof. By Theorem V, the first determinant here ap-

pearmg may be expressed as follows:

(1)

ai

as

6i

+
mbi

mh
mba

&2

But, the last determinant, by Theorem IV, may be written

as

(2) m
bi Ci

bi Oi

h Cs

and, applying Theorem III, this has the value m -0= 0,

with which the proof is complete for the third order deter-

minant above considered.

Similarly, the proof may be supplied in all other cases.

123. The Simplification of Determinants. The theorems

of § 122, especially Theorem VI, are of great value in reducing

given determinants to simpler forms. The manner in which

this is done will be clear from an examination of the following

examples.

Example 1.

= 6
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Explanation. First we subtracted the first column from the

second and third columns. This is equivalent to making two apph-

cations of Theorem VI, using to = — 1 in each. Next, we have taken

the factor 2 out of the second column of the resulting determinant,

and the factor 3 out of its third column (Theorem IV). Next, we have

subtracted 11 times the second column from the first colvmm, and then

taken out a factor 2 from the first colxmin. Finally, we have subtracted

2 times the second column from the third. Note that the last deter-

minant obtained has three zero elements, thus making its expansion

relatively easy to calculate, giving 3. In general, the theorems of § 122

are to be thus employed to obtain one or more zero elements and corre-

spondingly reduce the labor incident to the final expansion of a deter-

minant. It is not to be expected, of course, that all the elements can

be reduced to zero, or even all those in any one row or column, for this

would imply that the determinant had the value zero, which in general

would not be the case.

Example 2.

1 a b+c
1 6 c+a
1 c a+b

' =
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ai
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In a similar way, we may show that the same determinant

may be developed according to the minors of any given row

or column, provided only that in forming the various products

thus called for of elements into their minors, the following

general rule be observed:

Rule. The product of the element lying in the rth column

and sth row multiplied by its minor is to be taken positively

or negatively according as (r+s) is even or odd.

Thus, the determinant (1), when developed according to the ele-

ments of its second column, becomes

-biDb,+biDb^-biDb^.

Other illustrative forms of development for the same determinant

are
-(hDa2+b2Dbi-CiDc^,

oaDaj- 63^)63 +C3DC3.

Passing now to the typical determinant of the fourth

order (see (1), § 121) it will be found, upon examining the

terms of its expansion, that it may be developed according

to the minors of any one of its rows or columns in the maimer

just described, and in fact a like statement may be verified

for a determinant of any order whatever. For brevity, the

details of the proof will be omitted.

Thus, the determinant (1) of § 121, when developed by minors

according to the elements of its first column, becomes

aiDai

—

oaDoj +03-D£i3— O4D04.

Here, of course, each of the minors, Doj, Da^, Da^, Da^, is a determinant

of the third order.

Other illustrative forms of development for the same determinant are

-biDi^+b^b,-hsDb,+biDi^,

-aJDa^+biDb^ -oJ)ci+d^d^,

ciDci —cjDcj+csDcj—C4Dc^.

It is frequently advantageous to develop a determinant

according to its minors, especially in case several of the

elements in some column (or row) are equal to zero.
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Example. Find the value of the determinant

4 2 12
2 3 2 5

3 2 12
5 6 4 9

Solution. First subtract the third row from the first (Theorem

VI, § 122), thus obtaining as an equivalent determinant, and one

having a number of zeros in its first row,the following

10
2 3 2 5

3 2 12
5 6 4 9

Now develop by minors according to the elements of the first row.

3 2 5
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126. Cofactors. If the minor of an element of a deter-

minant be taken with its proper sign, as determined by the

Rule of § 125, the result is called the cofactor of that element.

Thus, in

the cofactor of 6i is

that of hi is

O]
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Proof. Consider the third order determinant (see above).

For this we may write, as shown above,

tti bi C\

= 61-61+62^2+6353.(1) 02 62

63

Now, no one of the cofactors Bi, Bi, B3 contains any of

the elements 61, 62, 63., Hence, these cofactors are unaffected

if in (1) we change 61, 62, 63 to ai, (h, a^. This gives

aiBi+02^2

+

azBi =
ai Cti
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Consider the determinant

D=

fli 61 Ci di

02 &2 C2 dz

03 ba d dz

at bi d di

Si, £2, • • •, etc., be its cofactors.and let Ai, A2,

Multiplying the first equation by Ai, the second by A2,

the third by A3 and the fourth by Ai and adding, we have

(aiAi+chA2+a3A3+aiAi)x+

,j. (Mi+Mz+Ms+MOj/H-
{ciAi+ C2A2+C3A3+ CiAi)z+

{diAi+d2A2+dsAs+diAi)w=kiAi+k2A2+ ksAs+htAi.

Here the coefficients of y, 2 and w each vanish by the

theorem of § 126, so that (1) reduces to

(2) {aiAi+a2A2+a3A3+aiAi)x = ^1^1+^2^2+^143+^4^4.

The coefficient of x in (2) is D; the right side is what D
becomes when the elements Oi, 02, as, cii are respectively re-

placed by ki, ki, ks, ki. Solving (2) for x, we thus have

(3) x=-

h
ki

kz

ki

61

bi

Cl

Ci

C3

Ci

d,

d3

di

D
In hke manner, by multiplying the first of the given

equations by5i, the second by S2, etc., and adding and apply-

ing the theorem of § 126, we obtain

cti ki Cl di

Oi ki Pi di

as fcs C3 di

Ui ki Cl di
(4) D
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Likewise, the values of z and w are each expressible as

the quotient of two determinants, the denominator in each

instance being D and the numerators being the determinants

obtained from D by replacing the elements of its third column

and fourth column respectively by h, fe, kg, ki.

Using for brevity the condensed form of notation ex-

plained in the Note at the close of § 121, the formulas for

X, y, z, w thus become respectively

1^16203^41 _|aifc2C3C?4| _ 10162^3^41 [aib2C3fc4|

1016203^4!' 1016203^4!' 1016203^4!' |ai&2C3ci!4|

These four formulas are seen to be analogous in formation

to the three formulas obtained ia § 118 where only three

equations were under consideration.

Similar statements and results evidently apply to any set

of simultaneous equations of the first degree containing as

many unknown letters as equations.

Note. It is to be observed that in case the determinant D which

appears above has the value zero, the formulas (3), (4), etc. can no

longer be used, since division by zero is not a permissible operation in

mathematics. Such cases require special investigation and are con-

sidered in detail in higher algebra.

Similar remarks apply in general, and in particular to the systems

already considered in §§ 116, 118.

128. Elimination. In all the systems of simultaneous

equations thus far considered it was essential that the num-
ber of equations be the same as the number of unknown let-

ters present. When this condition is not fulfilled, various

possibilities may arise and, while space does not permit of

their detailed study here, the single case in which the number
of equations is one greater than the number of unknowns is

particularly important and will therefore be briefly considered

below.

Suppose, then, that three unknowns, x, y, z are present
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and that these are to satisfy /owr equations of the first degree,

which we shall write in the form

aix+hiy+ciz = di,

a3X+b3y+C3Z=d3,

aiX+biy+C4Z= di.

Moreover, let us suppose that a certain three of these equa-

tions, say the first three, when treated as in § 127, may be

solved for x, y, z. We have left to determine when these

values of x, y, z will satisfy also the fourth equation.

Now, noting the form of the solutions for x,y,zm the first

three equations (see (3), § 118) and placing them in the

fourth equation, then clearing the latter of fractions it be-

comes (using the condensed notation explained in the Note

at the close of § 121)

04 1 dibiPi \+h\ aAcz
I

+C4,
1
ajjida \=di\ aib^Cz

\

.

Transposing all terms to the left side and noting that, by

Theorem II, § 122, we may write |rfi62C3| = |biC2d3|, |aid2C3| =
— |a:C2d3|, the last relation becomes (after multiplying

through by —1)

—
04 1 biCids

I

-|- &4 1 0102^3
1— C4 1 aiW3 1

-|- ^4 1 aiftjCs
I

= 0.

But this relation is the same as

ai 61 Ci di

Oi bi C2 di

az &3 Cs da

04 bi Ci di

as appears by expanding this determinant by minors ac-

cording to the elements of its last row.

Theokem. In order that the system (1) may have a set of

values X, y, z that will satisfy it, it is necessary that condition

(2), which relates only to the sixteen coefficients of the system,

shall be satisfied.

(2) =0,
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The determinant appearing in (2) is called the eliminant

of the system (1). Thus, the theorem above may be stated

briefly as follows. In order that the system (1) may have a

solution X, y, z it is necessary that the eliminant of the system

shall be equal to zero.

A similar theorem may now be supplied for any system of

linear equations containing one more equation than unknown
quantities. The student is advised to do this for such a

system of five equations.

EXERCISES

Solve by determinants each of the following systems of equations.

2x+3y— z+ M) = 6,

x+ y+ z-2w = i,

3x+2!/-32+ w=-\,
X— y— 2+3«J=— 1.

2a;+3y-4z+ w = Q,

X— 2/+ 2— w= —2,

7x+2y-3z+ w = 6,

5x+8y-l0z-3w = 3.

Form the eliminant for each of the following systems of equations

and use it to tell (by the theorem of § 128) whether the system may
have a solution. In oases where there may be a solution, proceed to

determine it (if possible) by the methods of § 127.!, [3x4-2^+32 = 17,
2x+32/ = 9, x+ 2/ = 4, 2x+ y+2z = W,
3x- y = 8, i. <2x- y = 5, 6. L^ , .„ , .-oq
x+ . = 6. |3x-2, = 7.

['IX'IX IZf:

6. Find the value (or values) of k for which the following system

may have a solution.

!kx+3y = lS,

x-7y=-8,
x—hy = 2.

7. Eliminate m from the system

(1) m^x—mx* = l,

(2) TO+2x=2.

Solution. First Method. Solve (2) for m, giving ot =2—2x, and

place this value of m in (1), giving as the desired result

{2-2xfx-{2-2x)x^= \,
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which upon reducing becomes

6a?-10x2+4a;-l=0.

This equation in x alone is, then, the result of eliminating m from

(1) and (2). It is an equation whose roots satisfy (1) and (2) whatever

the value of m.

Second Method. Multiply (2) through by m, giving

(3) m^+2mx=2m.

Now, arrange (1), (2) and (3) in the forms

(1) x-m'—:t?-m = l,

(2) Q-m^+l-m = (2-2x),

(3) l-m'+ (2x-2)m = 0.

Regarding this system as one of three linear equations between the

two quantities m' and m, and applying the results of § 128, we obtain

as the desired equation

X —a? 1

1 (2 -2a;) =0.

1 (2a; -2)

Upon expanding this determinant it readily reduces to

6a^-102;*+4x-l=0

and this is seen to be the same result as obtained above by the first

method.

In contrasting the two methods, it will be seen that the second does

not depend upon solving either of the given equations for m, as did the

first method. For this reason, the second method has a much wider

range of apphcability, as will be illustrated in the examples which

follow. The second method illustrates what is known as Sylvester's

method of elimination^.

8. Eliminate m from the following system, using both the methods

illustrated in Ex. 7 and noting that the result for either method is the

same.

m^x—2mi?+l=0,
m+3?—3m:c = 0.

t For details, see for example Burnside and Panton's Theory of

Equations (Longmans, Green and Co.), Chapter on EHmination.
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9. Write as a determinant the result of eliminating k from the system

[Hint. Multiply each equation through by k and consider the

resulting equations combined with the original ones.]

10. Find the condition (in the form of a determinant) that the two

equations

may have a common root.

[Hint. The result of eliminating x, where x is regarded as the com-

mon root, will express the desired condition.]

11. Find the condition (in the form of a determinant) that the two

equations

ax^+bx+c =
3?+qx+r = 0,

may have a common root.

12. Determine the value (or values) of k for which the following

two equations may have a common root.

2a?-73+3=0,
a?+kx+15=0.



ANSWERS

Page 1. 1. x-y+z. 2. x+y+z. 3. 2-0-6. 4. m-n+2a.
6. 0. 7. a!2/+42/a-s!!. 8. 5m-2n. 9. 5a26+62c-4a2c2-8a262+3a2c.

10. IlgJ. 11.4a6. 12..=^.—a+c 2x2/— 2/2
13. 2o6-2oc.

Page 3. 1; li. 2 ^52. 3 30a 16^_^
21 125 42 202/3

„ 2/ n «^a; '''"-"5 '7

7 ^ni.
a—b

14. ^:^.
o+b

19. i^.
1+X2

a

20. i^.
1—n

29x

10.

30a . 16o22/2 g2-4a:+3 3a+a2
42 202/3

"•
(x-l)2 ''• 9-a2

2nx2 7a<x52/ .„ x^ „ a-6
5oTO2/z' 1162c7'

'^^ y"' ^'*- a+b
.„ 3a+3& „ a2c-b2c a(a+2b)2
^^- ~2— "• -^ "• fc(a-26)2-

21.^^-
m

Page 5. 1. ^. 2.

7.

12.

16.

iab
8.

25X-61
56

„ 6x-'
a2— 62 2/~^

5a2+26a-91
(a+3)(a-3)(a+6)'

13.

2_4

2n2

g—

C

. 02

oc ' a—

X

x+2
24

6a -7

10. 11,

, 2a2 „ 6-a
O. r' D. —7—

•

a—b oh

3^—ax+bx—ab

14. 16.
a2+4a6+62

a2-62
4a3b

at-bi
17.

1+X2
X+X2'

Page 6. 1.
3^
4c2/

—56w

4:my
3 ^.

3xy

7. 5. 8. ?^. 9. ^±1^- 10. ^i±2. 11.
a 2 x2+5xH-4 m

14.

20.

26.

{m — y)^

y{m+y)
1

l-x
a2-j/2

X2+2/2'

21

16. 10a.

3^

16.

x+2/

26. a;-l.

22.

x+2/

x2+2

17.

Sax
26^'

72a26c

25x
'

x+5
x-3'

6.
ab

18.1.
xy

(x-l)(x+2)

27. x+2/.

23.
2/2-2/+1

6.

12- 5^- 13.

19

5v_

4x

Tax
62/5'

]_

62"

24.
x-y

Page 8. 1. 3. 2. 5. 3. 2. 4. -7. 6. 7. 6. 1. 7. 14 and 24.

8. 62 and 44. 9. $5 in the first bank, $40 in the second. 10. 10 miles.

11. 15 miles and 21 miles. 12. 6 hours. 13. 12 hours. 14. 7}4 hours.

16. 120 miles per hour. 16. 3 gallons. 17. 16M pounds. 18. 12^ miles.

231
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Page 11. 1. a; = 10, 2/ = 6. 2. x =Q,y=-2. 3. x = 3, 2/=8.
4. x=-2, i/ = 3. 5. x=-ll, 2/ = 4. 6. x = 9, 2/=6. 7. a; = 12, 1/ = 14.

8. x = 16, 2/ = 12. 9. a; = 18, 2/ = 6. 10. a;=3, 2/ = 2. 11. a; = 4, ^ = 5.

12. x=| i/=j|- 13. a;=l, 2/=| 14. x = 5, 2/ = l. 15. 40and35.

16. 18 and 12. 17. Father's 60, son's 40. 18. $1600 at 6%; $900 at 5%.
19. A, 18 days; B, 36 days. 20. 26 $1 bills, 12 $2 bills. 21. 16% pounds
of the 26-cent grade, 33J^ pounds of the 35-cent grade. 22. 1.5 gallons

from first cask, 6 gallons from second. 23. Automobile, 20 miles per
hour, bicycle 14 nules per hour. 24. Length 5 feet, breadth 3 feet.

Page 19. 1. x=^- 2. x=-^- 3. a;=-26. 4. x=-ah.

K «C - 26— 3c— 12 n -u , T a I 01 n 1
6. x= -• 6. x=-^i—r 7. a6+7. 8. a+36. 9. —r-r-

c—

1

1—0—

c

a+b
„ ac ^^ 6a+206 4a-126 .,„ 2d+36 3o-2c
10. r- 11. x=—^—' y=—=7;— 12. x= , . y= , ,,

a — b 19 19 ad+bc ad+bc
^„ dm— bn an—cm ... 3b 2a .,, ^ , l.^

"• ^=^d=6r 2'=^d:i6^- 14-^=r^ =-T 16. x=-(a+6),

2/ = 0+6. 16. One part =rr-,— 1 other part = :r-,
— 17. —rr' 18. 20 feet.1+m ^ 1+m a+b

vt
19. 3.74 inches. 20. 11 minutes. 21. ^tttpf—: miles per hour. 22. 4 feet.

oOT—t
23. 146 (approximately). 24. (a) 1139.02 feet per second; (6) 58.3°+.

25. (a) N= ^, (b) iV = 10TO+2^+lg; (c) lOOc+lOb+a.

26. (a) 2 pounds, 13 ounces; (6) 12 pounds; (c) 8 ft. per sec.

Page 23. 1. 256. 2.
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Page 25. 1. 3v^ 2. 2^6. 3. 6V2. 4. sVsT 6. SVTT

6. 2-^4. 7. 3-\J^ 8. 3-C^ 9. 2\^. 10.
6V2

11.
2^3

5\/3 " 3 #'5

12. 6a26Va6^ 13. 9m2nSv»i»i- 14. 2{a+h)\/a+b. 15. 3xj/-v''x^

16.
4hk)i

17,
2fc-(J^2pfc

18,
(a+b)cV3d

20.
2\/7+ -v/35

2j 2V3-\/2 22 ll-6\/2 23 &a+Vab -I2h 24 z+Vx+l-S

25

7.

6a-6+5V2o2-a
14a -9

Page 27. 3. 1. 4. 4-i

a2-b2+2ab\/^
02+62

26,

4o-9b _ x-3

10. No.

- 3+^/=2 g l-4v/^ .

11 7

Page 33. 1. -l±v^ 2. 2, -8. 3. -2, 10. 4. 1, -|- 6. 2, -|-

6.2,-^- 7. -|| 8. 3, 1 9. i(5±Vi3). 10. i(3±V5).

11. |-| 12. 3,-| 13. 3, -1. 14. 1, -^- 15. 2, -5.

16. i(-5±-v/^). 17. i(7±\/^^). 18. -1, -3. 19. ±V^=T
20. ±1.

Page 35. 1. 2a, —6a. 36, -76. 3. ^. -y- 4. 36, -76.

6. ^> -3cd. 6. i, --• 7. to(-1±V2) 8. -mzhVm^+m. 9. a, 1.

10. a,
' a

11. a, -

14

18

6-2 6+2

0+6 c

c

0+1
12.1,

a+5

-S-' -TT- IB. ffl+6,
;

19. a, -=
o+b " "' 7

Page 37. 1. -2, -3. 2. 9, -3.

16. -a, -b.

20.«+6,^

13. a+1, a-1.

1 1
17.

062 026

1

6. I-,
--• 7. ±2, ±V-2. 8. 3,|(-1±>/^)- 9- ±1, ±2.

3a

10. I
g(-2±Vl9).

13. -1, ±lV2.

11. -1,

14. a, b.

12. 1, i(-4±9v^^).
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Page 39. 1. ±1, ±2. 2. ±2, ±1/3. 3. ±1, ±|

4. l,|l(-l±i/^), |(-l±^/^). 6. 3, -1. 6. ±2, ±\/^^

7. 16, ^- 8. 9. 9. 12. 10.
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Page 68. 1. (a;=4, y=S); (x=3, 2/=4). 2. (a;=7, y=l);

(x = l, y=7y, (x=-l, 2/= -7); (x=-7, y=-l). 3. (a>=5, 2/=2);

(x=-4,y=-|)- 4. (*=! 2/=2); (a; = 1.2,=3)- 6. 0«;=2,2/=3);

(a;=54,j/=0- 6. («=3, 2/ = l); (a;= -3, j/=-l). 7. (a:=5, y=4);

(a;=-6, 2/= -4). 8. (x=6,y=8); (x=8, 2/=6); (a;=-6, 2/= -8);

(.x=-8, y=-6). 9. (a!=12, 2/=3); [(.x=-7,y—^ ; (a;=|+|v'^

2/=|+iv^); (x=|-|-v^, y=l~V2a). 10. (a;=Vn, 2/=0);

(a;=—\/n,2/=0);(a; = l,2/=2);(a;=-l,2/=-2). 11. (a; = l, 2/= -1);

-l-VS). 12. (a; =3, y=2y, (x=2, y=-3); (a; = 16, 2/=-24);

(^=-r^=-f)- ^^•(^=^^=^)'(^=-^'^=-^)
14. (aj=6, 2/=2); (.x=-6, y=-2); (,x=8V^, y=6^^=iy,

(X SV'^, 2/=-6v^^).

Page 68. 1. 4 and 8. 2. 81 and 1. 3. 12 in. and 16 m. 4. 16 rods
long, 10 rods wide. 6. 2 ft. and 1 ft. 6. 6 ft. and 1 ft. 7. Altitude =
2.529 in., Base = 1.264 in. 8. Length = 96.883 ft., Width = 24.772 ft.

9. Either increase the length by 7.38 ft. and diminish the width by
.38 ft., or diminish the length by 3.38 ft. and increase the width by
10.38 ft. 10. 15 days for the one man and 10 days for the other.

11. Circimiference of fore wheel = 10 ft.; circmnference of rear wheel =
12 ft. 12. Principal = $125, rate = 6%. 13. Time = 3 hours, rate =
10 miles per hour. 14. Reduced length = 108ft., reduced width=28ft.,
or reduced length = 18 ft., reduced width = 168 ft.

Page 73. 1. 36. 2. -36. 3. llx-ll?/. 4{ 165. 5. 208.. 6. 82i^.

7. (a) 370.3 ft., (6) 2318.4 ft. 8. $2.60; $68.90. 9. 2500. 10. 72.

11. 336. 12. 43 ft. 13. 246 in. 14. 10.
' 15. 55. 16. 237 in.

20. (o) 20 in., (6) 31f in. 21. a= -139, 1= 53.

Page 78. 1. 512. 2. 32. 3. ~ 4. oUxU. 5. 4 6. 510.

7. 3906. 8. -^- 9. i—^- 10- 765. 11. ~ 12. 2046. 13. 3279.
10^4 1 —o^ Id

100* 1 97
14. (o) 128, (&) 1024. 16. i^= 1333333}^ bu. 16. 1364. 17. ^
18. 5 sec. 19. 128. 26. Either 15, 8, 1 or 5, 8, 11.
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Page 82. 1. 3. 2. |. 3. |. 4. 4f • 6. j2_. 6. |. 7. |(v^+l).

8. Io-a/S). 9. —i^— 10. 36 m. 11. 16A min. after 3 o'clock.
<* 10V3-6

T>=^<. oe < 17 _ 5 „ 181 • 169 _ 19 „ , , _ „ ,
Page as. 1.~ 2. 3^ 3.^ i.^6.j^^ 6. 1^. 7. 3^^,

8. 5^bV 9- eyf^- 10. 34Ui-

Page 92. 2. 300 ft. 3. 7* sq. yd. 4. 8. 6. 6750. 6. $876.56.
7. IH ohms. 8. 12 in. 9. 11 mi. 10. 302 (approximately).

13. (2-V2) ft., or approximately 0.586 ft. 15.2. 17. IJ^ft. 18. •33*%.

20. About 12%.

Page 115. 1. 2.3821. 2. 8.5786-10. 3. 0.7456. 4. 8.0957-10.
5. 144.83n 6. 155.214*. 7. 178.88. 8. 9.852. 9. 4914. 10. 5.496*.

11. 3403077000 (approximately). 12. 1236 (approximately).
13. 0.006805.

Page 117. 1. 0.3273. 2. 1.4842. 3. 4.3187. 4. 8. 8859-10.
5. 15.667*. 6. 6.50. 7. 89.52*. 8. 1.201*. 9. 371. 10. 0.56825.

11. 68.8. 12. 1.0114. 13. .7734.

Page 119. 1. 6.0205. 2. 1.4826. 3. 6.4910-10. 4. 6.2560.

6. 686.29. 6. 288.1. 7. 288.9. 8. 0.0001641. 9. 189.6. 10. 1.437.

11. 19.011.

Page 120. 1. 0.2408. 2. 0.1647. 3. 9.5607-10.
4. 0.3172. 6. 17.746. 6. 1.628. 7. 1.629. 8. 0.06253. 9. 0.605.

10. 14.312. 11. 9.16.

Page 121. 1. 13285. 2. 6169.5. 3. 2189. 4. 603. 6. 4.072.

6. 15.61 ft. 7. 3.88 sq. in. 8. 4217.27 ft

Page 122. 1. a; = 1.66*. 2. a; =6.323*. 3.0.91.3*. 4. a; = -0.682*.

e. -0.494*. 6. a;=2 or 2.18*. 7. a; = 1.709* 2/= 3.270*. 8. a; =1.198*,

J/ = 1.387*.

Page 126. 1. $537.10. 2. $320.70. 3. $1014. 4. $439.50.

6. 17 years. 6. 14.2 years. 7. 5%. 11. 4.83 years. 12. $5000.

Page 128. 2. $2206.50. 3. $362.22. 4. $4965.10. 5. $77,217.35.

7. $370.85. 8. $6,716.
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Page 135. 1. a^+3x2j/+3xj/2+!/3. 2. ai+'ia^+ea^h'+idl^+U.
3. 3?-Zoi^+Zx'!P~y\ 4. o*-4a36+6o2fe2-4afe3+64. 5. 32+80?-+
80r2+40r3+10r4+r5. 6, a7+7o6a;+21a6x2+35a4a:3+35o3x4+21a2a:6-|-
7oa^+xV. 7. g5_i5^+9033_270ff2+405s-243. 8. aio+5a8x+10a6x2+
10o4x3+5o2a^+26. 9. ai-AoH^+Ga'^ofi-ia^+x^. 10. 16o4+32a3+
24o2+8a+l. 11. x5-15a%+90x32/2-270x22/3+405xj/4_2432/5.
12. l+6x2+15a^+20z6+15a;8+6xi''+xi2. 13. l-8x+28x2-56x3+

70X«- 56x5+28x6-8x7+x8. 14. y^^K^jAfi_^2J^^-L.

16. 81a8-108a6+56o*-12a2+l. 16. aio+10a9x+45a8x2+120a7x3+
210o6x4+252a5x5+210o4x6+120a3x7+45a2a;8+10ox9+xH).

x'^x6j/^x62/2^X^3^a3j^^.-i;22^5T^2;2^T^j^7

18. g-sg+lO^-lO^+sg-

J

19. a2+3a^A^+36^V6+

52^. 20. 2v^+;^+3^+l,

Page 136. 1. 70o4x4. 2. 56x32/5. 3. 672x6. 4. I0m5,i9. 5. -252ai06io.

6.-42504x19. 7. 462a;. 8. 12870a8. 9. 495xi2. 10. -960 -v/2.

Page 139. 1. a^+|a~*x-^o~^x2+^a'^x3

-8. a"2-2a~'x+4o~*a!2-4o~^x3+

-

3. l+gX-gX2+—x3
.

|(2a)-%2+_|(2a)-*63_ .... g. a-*+?a-Vx2+|a-'^x4+

^a-tW-. 7.2*+1.2-tx-|.2-lx2+A.2-^^-....

8. a*+ia-*x-|a-«.t2+A<j-¥^_ ....

"

9. 7^„-*^

10.|a4x-^. ll.?|«a-^xe. 12.^x7. 13. 45a-Ux8.

14. -^x~^i/9. 15. ^(2a)~^b5. le. 4-.125-.00194+.00006-

•••=4.12311+. 17. 5+ .2 -.004+.00016- — =5.19616+.
18. 2+ .08333 -.00347+.000241- -=2.08008+. 19. 2-.0625-
.00292-.0002136-.0000183 —=1.934338+. 20. 2+.0375-.001406+
.0000791 -.000005 ••• =2.036168+.

Page 142. 12. Sx-1. 13. x2-2x+l.
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Page 189. 1. 1,140. 2. 35. 3. 1,287. 4. 45. 5. 28. 6. 1960.
7. 4,410. 8. 386. 9. 364. 10. 4,751,836,375. 11. 5726.

Page 192. 1. 380. 2. 13,824. 3. 720. 4. 1260. 6. 163.

7. 20; 84; 371. 8. 34650. 9. 420. 10. 66. 11. 369,600. 12. 15,400.
13. 19,958,400. 14. 200. 15. 255.

Pagel95. l.(a)|,(6)A,(,)^. 2.^^. 4.
f

• 5.(a) ^
,, , 4 , . 24 .1 _ , , 11 ,,, 2197 - 9 . , , 1
('') 273' ^'^ 1365- ^- 24- ^- ^"^ ilel' ^^^ 20825- «• 38' ^'("^ 8

(b)
I

(r) 1 10. g^- 11. $1.25. 12. $4.

„ oni <5 „8 0I6 .1 .91.1
Page 201. 1. 3g. 2.^^^- 3. g^- 4.- 6.^- 6. ^

r, ofto 1 45,957. 7,237
P^S"202. 1.3^, 3^.
Page 204. 1. 2. 2. 22. 3. 61. 4. -2o&. 5. 2a. 6. 66^.

Page 206. 1. 2,-2. 2. 4,2. 3. -2ift-, ||- 4. 9,6. 5. -11,4.

„ am+hc hm—ac _ op+w p—bn „ , . 36 2a
" a2+62' a2+62' '• ^6+1' ^6+1' "'

~"' " ^- ~T' "T"

Page 208. 1. 18. 2. -146. 3. -54. 4. 16. 6. llx-134.
6. 66—3o—28. 7. aez+bfx+cdy—cex—afy— bdz. 8. a;2— j/2

Page 211. 1. 1, 2, 3. 2. 16, 10, -5. 3. 39, 21, 12. 4. 8, 9, 12.

6. 1, 3, 5. 6. t ^. % 7. a+b, a-b, 2a. 8. -, h -
Z i Z a c

Page 214. 3. 70.

Page 219. 1. -100. 2. 30. 3. 0.

Page 222. 1. 110. 2. -68. 3. 0.

Page 228. 1. x = l, y = 2, z = d, w = l. 2. x = l, y = 2, 2 = 3, iw = 4.

3 3
4. a; = 3, 2/ = l. Z. x=^> y = i, z =~ 6. fc=2or-6.

8. 5x6-2x4-9a2+6a!-l=0. 12. fc=-8or-~



APPENDIX

TABLE OF POWERS AND ROOTS

Explanation

1. Square Roots. The way to find square roots from the

Table is best understood from an example. Thus, suppose

we wish to find Vl.48. To do this we first locate 1.48 in

the column headed by the letter n. We find it near the

bottom of this column (next to the last number). Now
we go across on that level until we get into the column

headed hy^/n. We find at that place the number 1.21655.

This is our answer. That is, Vl.48 =1.21655 (approxi-

mately).

If we had wanted Vl4.8 instead of v'1.48 the work would

have been the same except that we would have gone over

into the column headed VlO n (because 14.8=10X1.48).

The number thus located is seen to be 3.84708, which is,

therefore, the desired value of Vl4.8.

Again, if we had wished to find Vl48 the work would take

us back again to the column headed Vn, but now instead

of the answer being 1.21655 it would be 12.1655, In other

words, the order of the digits in Vl48 is the same as for

v'1.48, but the decimal point in the answer is one place

farther to the right.

Similarly, if we desired Vl480 the work would be the same

as before except that we must now use the column headed

v^lO n and move the decimal point there occm-ring one place

farther to the right. This is seen to give 38.4708.

Thus we see how to get the square root of 1.48 or any

power of 10 times that number.

341
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In the same way, if we wish to find V.MS, or V.0148, or

V.00148, or the square root of any number obtained by
dividing 1.48 by any power of 10, we can get the answers

from the column headed Vn or VlO n by merely placing

the decimal point properly. Thus , we find that V.148 =
.384708, V^OMS= . 121655, V.00U8 = .0384708, etc.

What we have seen in regard to the square root of 1.48

or of that number multiplied or divided by any power of

10 holds true in a similar way for any number that occurs

in the column headed n, so that the tables thus give us

the square roots of a great many numbers.

2. Cube Roots. Cube roots are located in the tables

in much the same way as that just described for square

roots, but we have here three columns to select from instead

of two, namely the columns headed '^, "V^lOn, v^lOO n.

Illustration.

•^1.48 occurs in the column headed v^ and is seen to be 1.13960.

''^14.8 occurs in the column headed "V^IO n and is seen to be 2.4552.

'V^148 occurs in the column headed v^lOO n and is seen to be
5.28957.

To get vCTii we observe that .148= A/i^ = -\/3ii = -117148.
^^ 10 ^1000 10

Thus, we look up 'V^148 and divide it by 10. The result is instantly-

seen to be .528957. Similarly, to get v^.0148 we observe that

^^^^^^^^a/^ =
•VtocI

"
in

'^^^^^ '^^^^' "^^ ^°°^ ^P '^'^^ '^^^

divide it by 10, giving the result .24552.

To get •v^.00148 we observe that v^.00148=^^^ = ivTiS, so

that we must divide v'1.48 by 10. This gives .11396.

Similarly the cube root of any number occurring in the

column headed n may be found, as well as the cube root of

any number obtained by multiplying or dividing such a
number by any power of 10.
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3. Squares and Cubes. To find the square of 1.48 we
naturally look at the proper level in the column headed n^.

Here we find 2.1904, which is the answer. If we wished the

square of 14.8 the result would be the same except that

the decimal point must be moved two places to the right,

giving 219.04 as the answer. Similarly the value of (148)^

is 21904.0 etc.

On the other hand, the value of (.148)^ is found by moving

the decimal place two places to the left, thus giving .021904.

Similarly, (.0148)2= .00021904, etc.

To find (1.48)'. we look at the proper level in the column

headed n^ where we find 3.24179. The value of (14.8)^ is

the same except that we must move the decimal point three

places to the right, giving 3241.79. Similarly, in finding

(.148)' we must move the decimal place three places to the

left, giving .00324179.

Further illustrations of the way to use the tables will be

found in § 140.

EXERCISES

Read off from the tables the values of each of the following ex-

pressions.

1. Vii 4. v''670 7. VMl 10. -vCOOiSi

2. VK9 5. V^ 8. \^W7 11. V.000143

3. -v^ 6. Vma 9. V.00164 12. ^.000143
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TABLE II—IMPORTANT NUMBERS

A. Units of Length

Metric Units

10 millimeters = 1 centimeter (cm.)

(mm.)
10 centimeters = 1 decimeter (dm.)

10 decimeters = 1 meter (m.)

10 meters = 1 dekameter (Dm.)
1000 meters = 1 kilometer (Km.)

Metric to^ English

1 cm. = 0.3937 in.

1 m. = 39.37 in. = 3.2808 ft.

1 Km. = 0.6214 mi.

B. Units of Area or Surface

1 square yard = 9 square feet = 1296 square inches

1 acre (A.) = 160 square rods = 4840 square yards

1 square mile = 640 acres = 102400 square rods

C. Units of Measurement of Capacity

English Units



INDEX

Abscissa, 13.

Addition, of fractions, 4.

Annuity, 127; present value of, 127.

AntUogarithm, 113.

Arithmetic Mean, 72.

Arithmetic Progression, 70.

Axes, coordinate, 13.

Binomial Theorem, 123; general

term of, 135; proof of, 136.

Boyle's Law, 91.

Characteristic, of a logarithm, 100.

Cofactor of a determinant, 223.

Combination, 187.

Common Difference, 70.

Common Ratio, 75.

Completing the square, 28.

Compound Interest, 125.

Constant, 88.

Coordinates of a point, 13.

Critical points of a function, 154.

Dependent events, 197.

Depressed equation, 164.

Derivative of a function, 147; of a
polynomial, 152.

Determinant, defined, 204; elements
of, 204; principal diagonal of,

204; minor diagonal of, 204; use-

ful properties of, 214; minors of,

219; cofactors of, 223.

Di&criminant, 46.

Division, of fractions, 6.

Elimination, 10; by determinants,

226.

Ellipse, 57.

Equation, simple, 8; literal, 16;

quadratic, 28; literal quadratic,

34; in quadratic form, 38; radical,

39; simultaneous quadratic, 55;

exponential, 122; depressed, 164;

transformations of, 166.

Expectation, value of, 195.

Exponents, laws of, 22; fractional,

22; negative, 22; zero, 22.

Factorial number, 185.

Fractions, addition and subtraction

of, 4; multiplication and division

of, 6.

Function, defined, 140; linear, 140;

quadratic, 141; cubic, 142; general

integral rational, 142; graph of,

144; derivative of, 147; maxima
and minima points of, 154 ; critical

points of, 154.

Geometric Mean, 77.

Geometric Progression, 75; Infinite,

80.

Graph, of an equation, 13.

Hooke's Law, 90.

Homer's Method, 174.

Hyperbola, 58.

Independent Events, 197.

Interpolation, 111.

Inversions of order in a determinant,
212.

Kepler's third law, 91.

Least conunon multiple, 4.

Limit, 83.

Logarithm, defined, 98 ; to any base,

122; common, 122.

Mantissa, 100.

Mathematical Induction, 130.

Maxima and minima points, 154.

Minor of a determinant, 219.

Mortality table, 203.

Multiplication, of fractions, 6.

Number, imaginary, 26; pure imag-
inary, 26; complex, 26; rational,

46; irrational, 46; real, 46.
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Ordinate, 13.

Origin, 13.

Permutation, 184.

Probability, defined, 194.

Quadratic equation, 28; literal, 34;

type form of, 43; general, 44;

discriminant of, 46; having given

solutions, 50; graphical solution

of, 51; simultaneous, 55.

Radicals, simplification of, 24.

Reduction, algebraic, 1.

Remainder Theorem, 160.

Repeated Trials, theorem on, 200.

Repeating Decimal, 84.

Slide Rule, 124.

Subtraction, of fractions, 4.

Synthetic Division, 161.

Tabular difference, 110.

Variable, 83; 88.

Variation, direct, 86; inverse, 87;
joint, 87; geometrically considered,

96.










